The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situati...The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality.展开更多
In this study,it aims at examining the differences between humangenerated and AI-generated texts in IELTS Writing Task 2.It especially focuses on lexical resourcefulness,grammatical accuracy,and contextual appropriate...In this study,it aims at examining the differences between humangenerated and AI-generated texts in IELTS Writing Task 2.It especially focuses on lexical resourcefulness,grammatical accuracy,and contextual appropriateness.We analyzed 20 essays,including 10 human written ones by Chinese university students who have achieved an IELTS writing score ranging from 5.5 to 6.0,and 10 ChatGPT-4 Turbo-generated ones,using a mixed-methods approach,through corpus-based tools(NLTK,SpaCy,AntConc)and qualitative content analysis.Results showed that AI texts exhibited superior grammatical accuracy(0.4%–3%error rates for AI vs.20–26%for university students)but higher lexical repetition(17.2%to 23.25%for AI vs.17.68%for university students)and weaker contextual adaptability(3.33/10–3.69/10 for AI vs.3.23/10 to 4.14/10 for university students).While AI’s grammatical precision supports its utility as a corrective tool,human writers outperformed AI in lexical diversity and task-specific nuance.The findings advocate for a hybrid pedagogical model that leverages AI’s strengths in error detection while retaining human instruction for advanced lexical and contextual skills.Limitations include the small corpus and single-AI-model focus,suggesting future research with diverse datasets and longitudinal designs.展开更多
This conceptual study proposes a pedagogical framework that integrates Generative Artificial Intelligence tools(AIGC)and Chain-of-Thought(CoT)reasoning,grounded in the cognitive apprenticeship model,for the Pragmatics...This conceptual study proposes a pedagogical framework that integrates Generative Artificial Intelligence tools(AIGC)and Chain-of-Thought(CoT)reasoning,grounded in the cognitive apprenticeship model,for the Pragmatics and Translation course within Master of Translation and Interpreting(MTI)programs.A key feature involves CoT reasoning exercises,which require students to articulate their step-by-step translation reasoning.This explicates cognitive processes,enhances pragmatic awareness,translation strategy development,and critical reflection on linguistic choices and context.Hypothetical activities exemplify its application,including comparative analysis of AI and human translations to examine pragmatic nuances,and guided exercises where students analyze or critique the reasoning traces generated by Large Language Models(LLMs).Ethically grounded,the framework positions AI as a supportive tool,thereby ensuring human translators retain the central decision-making role and promoting critical evaluation of machine-generated suggestions.Potential challenges,such as AI biases,ethical concerns,and overreliance,are addressed through strategies including bias-awareness discussions,rigorous accuracy verification,and a strong emphasis on human accountability.Future research will involve piloting the framework to empirically evaluate its impact on learners’pragmatic competence and translation skills,followed by iterative refinements to advance evidence-based translation pedagogy.展开更多
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a...Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.展开更多
文摘The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality.
基金supported by the Macao Science and Technology Development Fund(FDCT)(No.0071/2023/RIB3)Joint Research Funding Program between the Macao Science and Technology Development Fund(FDCT)and the Department of Science and Technology of Guangdong Province(FDCTGDST)(No.0003-2024-AGJ).
文摘In this study,it aims at examining the differences between humangenerated and AI-generated texts in IELTS Writing Task 2.It especially focuses on lexical resourcefulness,grammatical accuracy,and contextual appropriateness.We analyzed 20 essays,including 10 human written ones by Chinese university students who have achieved an IELTS writing score ranging from 5.5 to 6.0,and 10 ChatGPT-4 Turbo-generated ones,using a mixed-methods approach,through corpus-based tools(NLTK,SpaCy,AntConc)and qualitative content analysis.Results showed that AI texts exhibited superior grammatical accuracy(0.4%–3%error rates for AI vs.20–26%for university students)but higher lexical repetition(17.2%to 23.25%for AI vs.17.68%for university students)and weaker contextual adaptability(3.33/10–3.69/10 for AI vs.3.23/10 to 4.14/10 for university students).While AI’s grammatical precision supports its utility as a corrective tool,human writers outperformed AI in lexical diversity and task-specific nuance.The findings advocate for a hybrid pedagogical model that leverages AI’s strengths in error detection while retaining human instruction for advanced lexical and contextual skills.Limitations include the small corpus and single-AI-model focus,suggesting future research with diverse datasets and longitudinal designs.
文摘This conceptual study proposes a pedagogical framework that integrates Generative Artificial Intelligence tools(AIGC)and Chain-of-Thought(CoT)reasoning,grounded in the cognitive apprenticeship model,for the Pragmatics and Translation course within Master of Translation and Interpreting(MTI)programs.A key feature involves CoT reasoning exercises,which require students to articulate their step-by-step translation reasoning.This explicates cognitive processes,enhances pragmatic awareness,translation strategy development,and critical reflection on linguistic choices and context.Hypothetical activities exemplify its application,including comparative analysis of AI and human translations to examine pragmatic nuances,and guided exercises where students analyze or critique the reasoning traces generated by Large Language Models(LLMs).Ethically grounded,the framework positions AI as a supportive tool,thereby ensuring human translators retain the central decision-making role and promoting critical evaluation of machine-generated suggestions.Potential challenges,such as AI biases,ethical concerns,and overreliance,are addressed through strategies including bias-awareness discussions,rigorous accuracy verification,and a strong emphasis on human accountability.Future research will involve piloting the framework to empirically evaluate its impact on learners’pragmatic competence and translation skills,followed by iterative refinements to advance evidence-based translation pedagogy.
文摘Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.