期刊文献+
共找到1,503篇文章
< 1 2 76 >
每页显示 20 50 100
Energy Efficiency Operating Indicator Forecasting and Speed Design Optimization for Polar Ice Class Merchant Vessels
1
作者 LU Yu LI Chen−ran +3 位作者 ZHU Xiang−hang LI Shi−an GU Zhu−hao LIU She−wen 《船舶力学》 北大核心 2025年第6期901-911,共11页
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p... In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t. 展开更多
关键词 energy efficiency Operational Indicator ice-class ships segment division design optimization
在线阅读 下载PDF
Energy Efficiency Optimization for Active Reconfigurable Intelligent Surface Assisted Multi-Antenna Jamming Systems
2
作者 Qin Hao Zhu Jia +5 位作者 Zou Yulong Li Yizhi Lou Yulei Zhang Afei Hui Hao Qin Changjian 《China Communications》 2025年第6期44-56,共13页
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste... In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE. 展开更多
关键词 active reconfigurable intelligent surface(ARIS) beamforming optimization jamming energy efficiency(JEE)
在线阅读 下载PDF
Enhancing LoRaWAN Sensor Networks:A Deep Learning Approach for Performance Optimizing and Energy Efficiency
3
作者 Maram Alkhayyal Almetwally M.Mostafa 《Computers, Materials & Continua》 2025年第4期1079-1100,共22页
The rapid expansion of the Internet of Things(IoT)has led to the widespread adoption of sensor networks,with Long-Range Wide-Area Networks(LoRaWANs)emerging as a key technology due to their ability to support long-ran... The rapid expansion of the Internet of Things(IoT)has led to the widespread adoption of sensor networks,with Long-Range Wide-Area Networks(LoRaWANs)emerging as a key technology due to their ability to support long-range communication while minimizing power consumption.However,optimizing network performance and energy efficiency in dynamic,large-scale IoT environments remains a significant challenge.Traditional methods,such as the Adaptive Data Rate(ADR)algorithm,often fail to adapt effectively to rapidly changing network conditions and environmental factors.This study introduces a hybrid approach that leverages Deep Learning(DL)techniques,namely Long Short-Term Memory(LSTM)networks,and Machine Learning(ML)techniques,namely Artificial Neural Networks(ANNs),to optimize key network parameters such as Signal-to-Noise Ratio(SNR)and Received Signal Strength Indicator(RSSI).LSTM-ANN model trained on the“LoRaWAN Path Loss Dataset including Environmental Variables”from Medellín,Colombia,and the model demonstrated exceptional predictive accuracy,achieving an R2 score of 0.999,Mean Squared Error(MSE)of 0.041,Root Mean Squared Error(RMSE)of 0.203,and Mean Absolute Error(MAE)of 0.167,significantly outperforming traditional regression-based approaches.These findings highlight the potential of combining advanced ML and DL techniques to address the limitations of traditional optimization strategies in LoRaWAN.By providing a scalable and adaptive solution for large-scale IoT deployments,this work lays the foundation for real-world implementation,emphasizing the need for continuous learning frameworks to further enhance energy efficiency and network resilience in dynamic environments. 展开更多
关键词 LoRaWAN performance optimization energy efficiency ML DL
在线阅读 下载PDF
Optimizing Hydropower Resources for Maximum Power Generation Efficiency in Environmentally Sustainable Electrical Energy Production
4
作者 Bevl Naidu Krishna Babu Sambaru +3 位作者 Guru Prasad Pasumarthi Romala Vijaya Srinivas K.Srinivasa Krishna V.Purna Kumari Pechetty 《Journal of Environmental & Earth Sciences》 2025年第6期381-394,共14页
Water power is one of the key renewable energy resources,whose efficiency is often hampered due to inefficient water flow management,turbine performance,and environmental variations.Most existing optimization techniqu... Water power is one of the key renewable energy resources,whose efficiency is often hampered due to inefficient water flow management,turbine performance,and environmental variations.Most existing optimization techniques lack the real-time adaptability to sufficiently allocate resources in terms of location and time.Hence,a novel Scalable Tas-manian Devil Optimization(STDO)algorithm is introduced to optimize hydropower generation for maximum power efficiency.Using the STDO to model important system characteristics including water flow,turbine changes,and energy conversion efficiency is part of the process.In the final analysis,optimizing these settings in would help reduce inefficiencies and maximize power generation output.Following that,simulations based on actual hydroelectric data are used to analyze the algorithm's effectiveness.The simulation results provide evidence that the STDO algorithm can enhance hydropower plant efficiency tremendously translating to considerable energy output augmentation compared to conven-tional optimization methods.STDO achieves the reliability(92.5),resiliency(74.3),and reduced vulnerability(9.3).To guarantee increased efficiency towards ecologically friendly power generation,the STDO algorithm may thus offer efficient resource optimization for hydropower.A clear route is made available for expanding the efficiency of current hydropower facilities while tackling the long-term objectives of reducing the environmental impact and increasing the energy output of energy produced from renewable sources. 展开更多
关键词 Hydropower optimization Renewable energy energy Conversion efficiency Turbine Performance Envi-ronmental Scalable Tasmanian Devil optimization(STDO)
在线阅读 下载PDF
Efficiency Analysis and Performance Optimization of Heat Recovery Ventilators(HRVs)for Residential Indoor Air Quality Enhancement in Cold Climates
5
作者 Hamed Yousefzadeh Eini Mohammad Hossein Sabouri Mojtaba Babaelahi 《Fluid Dynamics & Materials Processing》 2025年第7期1771-1788,共18页
Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance ... Heat Recovery Ventilators(HRVs)are essential for improving indoor air quality(IAQ)and reducing energy consumption in residential buildings situated in cold climates.This study considers the efficiency and performance optimization of HRVs under cold climatic conditions,where conventional ventilation systems increase heat loss.A comprehensive numerical model was developed using COMSOL Multiphysics,integrating fluid dynamics,heat transfer,and solid mechanics to evaluate the thermal efficiency and structural integrity of an HRV system.The methodology employed a detailed geometry with tetrahedral elements,temperature-dependent material properties,and coupled governing equations solved under Tehran-specific boundary conditions.A multi-objective optimization was implemented in the framework of the Nelder-Mead simplex algorithm,targeting the maximization of the average outlet temperature and minimization of the maximum von Mises thermal stress,with inlet flow velocity as the design variable(range:0.5–1.2m/s).Results indicate an optimal velocity of 0.51563 m/s,achieving an average outlet temperature of 289.44 K and maximum von Mises stress of 221 MPa,validated through mesh independence and detailed contour analyses of temperature,velocity,and stress distributions. 展开更多
关键词 Heat recovery ventilators indoor air quality cold climate energy efficiency multi-objective optimization
在线阅读 下载PDF
Application of Energy Efficiency Optimization Technology in Steel Industry 被引量:1
6
作者 En TANG Yuan-jing SHAO +2 位作者 Xiao-gang FAN Li-de YE Jun WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第S1期82-86,共5页
It’s systematically analyzed that energy efficiency optimization technology has been applied in the field of steel industry. The fundamental principal of energy optimization technology is reasonably matching the qual... It’s systematically analyzed that energy efficiency optimization technology has been applied in the field of steel industry. The fundamental principal of energy optimization technology is reasonably matching the quality and price of energy as well as energy-dominated systematic energy efficiency management system. Specific measures of energy optimization have been put forward, which include taking high efficiency utilized technology such as energy saving from the original, the production process and recycling of waste heat and waste energy etc., integrating and configuring energy in an optimized way of high efficiency and excellent quality, fully realizing the function of different energy in order to optimize the utilization sequence of energy, and improving the energy medium system by themselves. Finally it is clearly pointed out that the steel industry should pay more consideration about the great deal of energy system which they have used now and an ideal energy evaluation methodology and standard should be built as soon as possible if they want to take full usage of the real role and function of energy in all aspects. 展开更多
关键词 energy efficiency optimization energy quality energy value steel industry
原文传递
Energy Management Strategy for Hybrid Electric Vehicle Based on System Efficiency and Battery Life Optimization 被引量:1
7
作者 YANG Yang SU Ling +2 位作者 QIN Datong GONG Hui ZENG Jianfeng 《Wuhan University Journal of Natural Sciences》 CAS 2014年第3期269-276,共8页
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal... A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range. 展开更多
关键词 hybrid electric vehicle energy management strategy efficiency optimization battery state of charge fuel-electric conversion factor
原文传递
Coyote Optimization Using Fuzzy System for Energy Efficiency in WSN
8
作者 Ahmed S.Almasoud Taiseer Abdalla Elfadil Eisa +5 位作者 Marwa Obayya Abdelzahir Abdelmaboud Mesfer Al Duhayyim Ishfaq Yaseen Manar Ahmed Hamza Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第8期3269-3281,共13页
In recent days,internet of things is widely implemented in Wireless Sensor Network(WSN).It comprises of sensor hubs associated together through the WSNs.The WSNis generally affected by the power in battery due to the ... In recent days,internet of things is widely implemented in Wireless Sensor Network(WSN).It comprises of sensor hubs associated together through the WSNs.The WSNis generally affected by the power in battery due to the linked sensor nodes.In order to extend the lifespan of WSN,clustering techniques are used for the improvement of energy consumption.Clustering methods divide the nodes in WSN and form a cluster.Moreover,it consists of unique Cluster Head(CH)in each cluster.In the existing system,Soft-K means clustering techniques are used in energy consumption in WSN.The soft-k means algorithm does not work with the large-scale wireless sensor networks,therefore it causes reliability and energy consumption problems.To overcome this,the proposed Load-Balanced Clustering conjunction with Coyote Optimization with Fuzzy Logic(LBC-COFL)algorithm is used.The main objective is to perform the lifespan by balancing the gateways with the load of less energy.The proposed algorithm is evaluated using the metrics such as energy consumption,throughput,central tendency,network lifespan,and total energy utilization. 展开更多
关键词 CLUSTERING wireless sensor networks fuzzy logic energy efficient optimization
在线阅读 下载PDF
Look-ahead horizon-based energy optimization with traffic prediction for connected HEVs
9
作者 XU Fu-guo SHEN Tie-long 《控制理论与应用》 北大核心 2025年第8期1534-1542,共9页
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec... With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed. 展开更多
关键词 look-ahead horizon connected and automated vehicle(CAV) hybrid electric vehicle(HEV) energy efficiency optimization traffic prediction
在线阅读 下载PDF
The Role of Participant Distribution and Consumption Habits in the Optimization of PV Based Renewable Energy Communities
10
作者 Antonio Sassone Shoaib Ahmed +2 位作者 Alessandro Ciocia Gabriele Malgaroli Antonio D’Angola 《Energy Engineering》 2025年第5期1715-1733,共19页
The expansion of renewable energy sources(RESs)in European Union countries has given rise to the development of Renewable Energy Communities(RECs),which aremade up of locally generated energy by these RESs controlled ... The expansion of renewable energy sources(RESs)in European Union countries has given rise to the development of Renewable Energy Communities(RECs),which aremade up of locally generated energy by these RESs controlled by individuals,businesses,enterprises,and public administrations.There are several advantages for creating these RECs and participating in them,which include social,environmental,and financial.Nonetheless,according to the Renewable Energy Directive(RED II),the idea of RECs has given opportunities for researchers to investigate the behavior from all aspects.These RECs are characterized by energy fluxes corresponding to self-consumption,energy sales,and energy sharing.Our work focuses on amathematical time-dependentmodel on an hourly basis that considers the optimization of photovoltaic-based RECs tomaximize profit based on the number of prosumers and consumers,as well as the impact of load profiles on the community’s technical and financial aspects usingMATLAB software.In this work,REC’s users can install their plant and become prosumers or vice versa,and users could change their consumption habits until the optimumconfiguration of REC is obtained.Moreover,this work also focuses on the financial analysis of the plant by comparing the Net Present Value(NPV)as a function of plant size,highlighting the advantage of creating a REC.Numerical results have been obtained investigating the case studies of RECs as per the Italian framework,which shows an optimal distribution of prosumers and consumers and an optimal load profile in which the maximum profitability is obtained.Optimization has been performed by considering different load profiles.Moreover,starting from the optimized configurations,an analysis based on the plant size is also made to maximize the NPV.This work has shown positive outcomes and would be helpful for the researchers and stakeholders while designing the RECs. 展开更多
关键词 REC self-consumed energy energy sold shared energy shared renewable energy optimization PROFITABILITY efficiency load profile net present value
在线阅读 下载PDF
A Special Issue:“Co-optimization and mechanism design of multimodal energy systems under carbon constraints”
11
作者 Lin Cheng Xiaojun Wan 《Global Energy Interconnection》 2025年第2期I0002-I0003,共2页
Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become... Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become a significant instrument for propelling the energy revolution and ensuring energy security.Under increasingly stringent carbon emission constraints,how to achieve multi-dimensional improvements in energy utilization efficiency,renewable energy accommodation levels,and system economics-through the intelligent coupling of diverse energy carriers such as electricity,heat,natural gas,and hydrogen,and the effective application of market-based instruments like carbon trading and demand response-constitutes a critical scientific and engineering challenge demanding urgent solutions. 展开更多
关键词 multimodal energy systems renewable energy accommodation energy utilization efficiency co optimization carbon constraints climate change carbon emission constraintshow mechanism design
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
12
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
A Layout Optimization Method of Composite Wing Structures Based on Carrying Efficiency Criterion 被引量:6
13
作者 ZHAO Qun DING Yunliang JIN Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期425-431,共7页
A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout ... A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout is optimized at the subsystem level to satisfy the constraints from system level. The approaching degrees of various failure critical loads in wing panels are employed to gauge the structure’s carrying efficiency. By optimizing the efficiency as an objective, the continuity of the problem could be guaranteed. Stiffened wing panels are modeled by the equivalent orthotropic plates, and the global buckling load is predicted by energy method. The nonlinear effect of stringers’ support elasticity on skin local buckle resistance is investigated and approximated by neural network (NN) surrogate model. These failure predictions are based on analytical solutions, which could effectively save calculation resources. Finally, the integral optimization of a large-scale wing structure is completed as an example. The result fulfills design requirements and shows the feasibility of this method. 展开更多
关键词 composite wing structure layout optimization carrying efficiency BUCKLING equivalent stiffness energy method surrogate model
原文传递
An Energy-Efficient UAV Deployment Scheme for Emergency Communications in Air-Ground Networks with Joint Trajectory and Power Optimization 被引量:3
14
作者 Shuo Zhang Shuo Shi +2 位作者 Weizhi Wang Zhenyu Xu Xuemai Gu 《China Communications》 SCIE CSCD 2022年第7期67-78,共12页
The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent... The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent transportation systems,and military missions.As an information carrier of air platforms,the deployment strategy of unmanned aerial vehicles(UAVs)is essential for communication systems’performance.In this paper,we discuss a UAV broadcast coverage strategy that can maximize energy efficiency(EE)under terrestrial users’requirements.Due to the non-convexity of this issue,conventional approaches often solve with heuristics algorithms or alternate optimization.To this end,we propose an iterative algorithm by optimizing trajectory and power allocation jointly.Firstly,we discrete the UAV trajectory into several stop points and propose a user grouping strategy based on the traveling salesman problem(TSP)to acquire the number of stop points and the optimization range.Then,we use the Dinkelbach method to dispose of the fractional form and transform the original problem into an iteratively solvable convex optimization problem by variable substitution and Taylor approximation.Numerical results validate our proposed solution and outperform the benchmark schemes in EE and mission completion time. 展开更多
关键词 SAGIN UAV energy efficiency(EE)maximization trajectory optimization power allocation
在线阅读 下载PDF
Energy Efficiency Maximization Strategy for Sink Node in SWIPT-Enabled Sensor-Cloud Based on Optimal Stopping Rules 被引量:2
15
作者 Zhe Wang Lina Ge +2 位作者 Taoshen Li Guifen Zhang Min Wu 《China Communications》 SCIE CSCD 2021年第1期222-236,共15页
Leveraging energy harvesting abilities in wireless network devices has emerged as an effective way to prolong the lifetime of energy constrained systems.The system gains are usually optimized by designing resource all... Leveraging energy harvesting abilities in wireless network devices has emerged as an effective way to prolong the lifetime of energy constrained systems.The system gains are usually optimized by designing resource allocation algorithm appropriately.However,few works focus on the interaction that channel’s time-vary characters make the energy transfer inefficiently.To address this,we propose a novel system operation sequence for sensor-cloud system where the Sinks provide SWIPT for sensor nodes opportunistically during downlink phase and collect the data transmitted from sensor nodes in uplink phase.Then,the energy-efficiency maximization problem of the Sinks is presented by considering the time costs and energy consumption of channel detection.It is proved that the formulated problem is an optimal stopping process with optimal stopping rules.An optimal energy-efficiency(OEE)algorithm is designed to obtain the optimal stopping rules for SWIPT.Finally,the simulations are performed based on the OEE algorithm compared with the other two strategies to verify the effectiveness and gains in improving the system efficiency. 展开更多
关键词 sensor-cloud SWIPT optimal stopping theory energy efficiency channel quality
在线阅读 下载PDF
Energy-Efficient Resource Optimization for Massive MIMO Networks Considering Network Load
16
作者 Samira Mujkic Suad Kasapovic Mohammed Abuibaid 《Computers, Materials & Continua》 SCIE EI 2022年第4期871-888,共18页
This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base st... This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base station(BS)adapts the number of antennas to the daily load profile(DLP).This paper takes into consideration user location distribution(ULD)variation and evaluates its impact on the energy efficiency of load adaptive massive MIMO system.ULD variation is modeled by dividing the cell into two coverage areas with different user densities:boundary focused(BF)and center focused(CF)ULD.All cells are assumed identical in terms of BS configurations,cell loading,and ULD variation and each BS is modeled as an M/G/m/m state dependent queue that can serve a maximum number of users at the peak load.Together with energy efficiency(EE)we analyzed deployment and spectrum efficiency in our adaptive massive MIMO system by evaluating the impact of cell size,available bandwidth,output power level of the BS,and maximum output power of the power amplifier(PA)at different cell loading.We also analyzed average energy consumption on an hourly basis per BS for the model proposed for data traffic in Europe and also the model proposed for business,residential,street,and highway areas. 展开更多
关键词 Massive MIMO traffic load energy efficiency user location distribution optimization
在线阅读 下载PDF
Optimisation of Direct Expansion (DX) Cooling Coils Aiming to Building Energy Efficiency
17
作者 Liang Xia Tong Yang +2 位作者 Yue Chan Llewellyn Tang Yung-Tsang Chen 《Journal of Building Construction and Planning Research》 2015年第2期47-59,共13页
Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number ... Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 - 9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation. 展开更多
关键词 optimal Tube ROW Number ENTROPY Generation MINIMIZATION Direct EXPANSION (DX) Cooling COIL Building energy efficiency
暂未订购
An Energy-Efficient MAC Protocol for WSNs: Game-Theoretic Constraint Optimization with Multiple Objectives
18
作者 Liqiang ZHAO Le GUO +1 位作者 CONG Li]] Hailin ZHANG 《Wireless Sensor Network》 2009年第4期358-364,共7页
In WSNs, energy conservation is the primary goal, while throughput and delay are less important. This re-sults in a tradeoff between performance (e.g., throughput, delay, jitter, and packet-loss-rate) and energy con-s... In WSNs, energy conservation is the primary goal, while throughput and delay are less important. This re-sults in a tradeoff between performance (e.g., throughput, delay, jitter, and packet-loss-rate) and energy con-sumption. In this paper, the problem of energy-efficient MAC protocols in WSNs is modeled as a game-theoretic constraint optimization with multiple objectives. After introducing incompletely cooperative game theory, based on the estimated game state (e.g., the number of competing nodes), each node independ-ently implements the optimal equilibrium strategy under the given constraints (e.g., the used energy and QoS requirements). Moreover, a simplified game-theoretic constraint optimization scheme (G-ConOpt) is pre-sented in this paper, which is easy to be implemented in current WSNs. Simulation results show that G-ConOpt can increase system performance while still maintaining reasonable energy consumption. 展开更多
关键词 Wireless Sensor Network MAC energy efficiency GAME Theory CONSTRAINT optimization
在线阅读 下载PDF
Optimal Size for Maximal Energy Efficiency in Information Processing of Biological Systems Due to Bistability
19
作者 张弛 刘利伟 +2 位作者 王龙飞 岳园 俞连春 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期5-8,共4页
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo... Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection. 展开更多
关键词 In optimal Size for Maximal energy efficiency in Information Processing of Biological Systems Due to Bistability
原文传递
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
20
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON COOLING Cooling systems energy efficiency energy management HEATING Multiobjective optimization optimization Pareto principle
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部