期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
AI-driven accelerated discovery of intercalation-type cathode materials for magnesium batteries
1
作者 Wenjie Chen Zichang Lin +2 位作者 Xinxin Zhang Hao Zhou Yuegang Zhang 《Journal of Energy Chemistry》 2025年第9期40-46,I0003,共8页
Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performa... Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development. 展开更多
关键词 Magnesium-ion batteries Interpretable machine learning ai-driven workflow Material screening Intercalation cathode materials
在线阅读 下载PDF
A Review of AI-Driven Automation Technologies:Latest Taxonomies,Existing Challenges,and Future Prospects
2
作者 Weiqiang Jin Ningwei Wang +3 位作者 Lei Zhang Xingwu Tian Bohang Shi Biao Zhao 《Computers, Materials & Continua》 2025年第9期3961-4018,共58页
With the growing adoption of Artifical Intelligence(AI),AI-driven autonomous techniques and automation systems have seen widespread applications,become pivotal in enhancing operational efficiency and task automation a... With the growing adoption of Artifical Intelligence(AI),AI-driven autonomous techniques and automation systems have seen widespread applications,become pivotal in enhancing operational efficiency and task automation across various aspects of human living.Over the past decade,AI-driven automation has advanced from simple rule-based systems to sophisticated multi-agent hybrid architectures.These technologies not only increase productivity but also enable more scalable and adaptable solutions,proving particularly beneficial in industries such as healthcare,finance,and customer service.However,the absence of a unified review for categorization,benchmarking,and ethical risk assessment hinders the AI-driven automation progress.To bridge this gap,in this survey,we present a comprehensive taxonomy of AI-driven automation methods and analyze recent advancements.We present a comparative analysis of performance metrics between production environments and industrial applications,along with an examination of cutting-edge developments.Specifically,we present a comparative analysis of the performance across various aspects in different industries,offering valuable insights for researchers to select the most suitable approaches for specific applications.Additionally,we also review multiple existing mainstream AI-driven automation applications in detail,highlighting their strengths and limitations.Finally,we outline open research challenges and suggest future directions to address the challenges of AI adoption while maximizing its potential in real-world AI-driven automation applications. 展开更多
关键词 ai-driven automation techniques and systems artificial general intelligence(AGI) LLMs robotic process automation(RPA)
在线阅读 下载PDF
Future Manufacturing with AI-Driven Particle Vision Analysis in the Microscopic World
3
作者 Guangyao Chen Fengqi You 《Engineering》 2025年第9期68-84,共17页
Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transformi... Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transforming the way we interpret and analyze imaging data,simplifying complex tasks and enabling innovative experimental methods previously thought impossible.In smart manufacturing,these improvements are especially impactful,increasing precision and efficiency in production processes.This review examines the convergence of AI with particle image analysis,an area we refer to as“particle vision analysis(PVA).”We offer a detailed overview of how this technology integrates into and impacts various fields within the physical sciences and materials sectors,where it plays a crucial role in both innovation and operational improvements.We explore four key areas of advancement-namely,particle classification,detection,segmentation,and object tracking-along with a look into the emerging field of augmented microscopy.This paper also underscores the vital role of the existing datasets and implementations that support these applications,which provide essential insights and resources that drive continuous research and development in this fast-evolving field.Our thorough analysis aims to outline the transformative potential of AI-driven PVA in improving precision in future manufacturing at the microscopic scale and thereby preparing the ground for significant technological progress and broad industrial applications in nanomanufacturing,biomanufacturing,and pharmaceutical manufacturing.This exploration not only highlights the advantages of integrating AI into conventional manufacturing processes but also anticipates the rise of next-generation smart manufacturing,which is set to revolutionize industry standards and operational practices. 展开更多
关键词 Particle vision analysis ai-driven microscopic imaging Smart manufacturing
在线阅读 下载PDF
基于AI驱动的边坡地质灾害智能识别与巡检养护研究进展 被引量:2
4
作者 胡盛明 汪舟 +3 位作者 卢永飞 马贵平 毛志斌 王清华 《南昌工程学院学报》 2025年第1期37-47,共11页
为有效应对边坡地质灾害带来的严峻挑战,如何借助先进技术提升边坡地质灾害的监测与防治水平成为关键。回顾了人工智能(AI)技术在边坡地质灾害智能识别与巡检养护领域的最新研究进展;系统梳理了传统人工巡检方法的效率低下和安全隐患问... 为有效应对边坡地质灾害带来的严峻挑战,如何借助先进技术提升边坡地质灾害的监测与防治水平成为关键。回顾了人工智能(AI)技术在边坡地质灾害智能识别与巡检养护领域的最新研究进展;系统梳理了传统人工巡检方法的效率低下和安全隐患问题。综述了新型监测技术,如无人机、遥感和深度学习技术在提高边坡监测准确性和效率方面的发展;展望了未来研究方向,主要包括技术融合、自动化、实时监测与预警能力提升,以及数据驱动的决策支持等。同时,分析探讨了技术进步过程中面临的挑战,包括数据质量、算法过拟合和计算资源等问题,并强调建立边坡地质灾害数据库和分类标准的重要性,以实现快速识别和应对边坡地质灾害,降低社会经济损失和人员伤亡风险。研究结果可为构建更加完善和高效的地质灾害防控体系提供有益参考。 展开更多
关键词 AI驱动 公路边坡 地质灾害 智能识别 巡检养护
在线阅读 下载PDF
AI驱动的高校图书馆战略情报服务平台建设及案例研究
5
作者 吴爱芝 周子茗 +3 位作者 罗文馨 刘姝 张春红 陈金莉 《图书馆》 2025年第6期83-90,共8页
高校图书馆如何精准满足高校发展战略需求并提供高价值的战略情报服务是当前亟待解决的问题。利用自然语言处理、知识图谱和大模型技术从多元信息源获取高校学科、产业、行业等领域的情报内容,基于人工智能技术与算法建立AI驱动的战略... 高校图书馆如何精准满足高校发展战略需求并提供高价值的战略情报服务是当前亟待解决的问题。利用自然语言处理、知识图谱和大模型技术从多元信息源获取高校学科、产业、行业等领域的情报内容,基于人工智能技术与算法建立AI驱动的战略情报服务平台,对科研情报数据进行深入挖掘与分析,是在当前技术和学术生态环境下高校图书馆开展智能型战略情报服务的有效途径。文章以北京大学图书馆构建的AI驱动型战略情报服务平台为案例,梳理平台建设的关键技术、流程与成效等,提出高校图书馆战略情报服务平台具有巨大的推广潜力和重要的示范价值,是深入开展高校图书馆学科与研究支持服务、决策与智库服务、数据与知识服务等的重要抓手之一。 展开更多
关键词 AI驱动 高校图书馆 战略情报服务 服务平台 大模型
在线阅读 下载PDF
AI4City:人工智能赋能城市的理论框架 被引量:1
6
作者 吴志强 《国际大都市发展研究(中英文)》 2025年第2期5-19,共15页
系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等... 系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等核心要素,全面赋能城市生产、生活和生态,推动城市向自组织、可学习、可迭代的高度智能化方向发展。与传统智慧城市及人工智能城市相比,AI4City强调技术伦理与社会责任,确保人工智能的发展符合人类价值观,为城市可持续发展提供新思路。 展开更多
关键词 AI4City 人工智能城市 智慧城市 需求驱动创新 智能治理
在线阅读 下载PDF
Smart Ecotourism and Natural Ecology in Kazakhstan
7
作者 Alexey Mikhaylov Sergey Barykin +9 位作者 Daria Dinets Vasilii Buniak Oksana Kompaniitseva Anton Kucher Ekaterina Shevchuk Oksana Kompaniitseva N.B.A.Yousif Tomonobu Senjyu Valery Abramov Naqib Ullah Khan 《Research in Ecology》 2025年第3期89-103,共15页
Artificial intelligence(AI)is transforming the tourism industry and affecting on natural ecology,making it more environmentally friendly,efficient and personalized.In 2025,AI technologies are being actively implemente... Artificial intelligence(AI)is transforming the tourism industry and affecting on natural ecology,making it more environmentally friendly,efficient and personalized.In 2025,AI technologies are being actively implemented to reduce the carbon footprint,optimize resources,and improve the travel experience.Here are the key applications of AI in environmentally sustainable smart tourism:AI in smart tourism is not just a technological trend,but a necessity for the sustainable development of the industry.Paper analyses personalized and green travel experience and smart tourism.AI-based applications(Google ARCore)allow tourists to get information about attractions without paper booklets.Virtual tours reduce the need for physical travel by reducing the carbon footprint.Platforms offer routes with minimal impact on nature(for example,hiking trails instead of car tours).Tourists can offset their carbon footprint through AI tools by financing tree planting.The introduction of AI solutions allows combining economic benefits with environmental responsibility,creating a future where travel becomes safer for the planet.Paper confirms idea about sustainable tourism development in developing countries and focus on premium ecotourism.Instead of mass tourism,AI helps promote unique destinations(safaris,diving,ethnographic tours),which increases income with less environmental damage.Smart cities with AI-driven transport and energy-saving solutions make tourism more sustainable. 展开更多
关键词 AI-Based Applications Virtual Tours Low-Impact Routes Carbon Footprint Offset ai-driven Transport Energy-Saving Solutions Deep Seek
在线阅读 下载PDF
A Detailed Review of Current AI Solutions for Enhancing Security in Internet of Things Applications
8
作者 Arshiya Sajid Ansari Ghadir Altuwaijri +3 位作者 Fahad Alodhyani Moulay Ibrahim El-Khalil Ghembaza Shahabas Manakunnath Devasam Paramb Mohammad Sajid Mohammadi 《Computers, Materials & Continua》 2025年第6期3713-3752,共40页
IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrai... IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional securitymeasures.This review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT ecosystems.The intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security issues.The methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in IoT.The reviewed solutions are categorized based on their ability to tackle specific security challenges.The review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and challenges.The findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data integrity.This paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks. 展开更多
关键词 Security in IoT applications PRIVACY-PRESERVING blockchain ai-driven security mechanisms
在线阅读 下载PDF
Digital Twins in the IIoT:Current Practices and Future Directions Toward Industry 5.0
9
作者 Bisni Fahad Mon Mohammad Hayajneh +3 位作者 Najah Abu Ali Farman Ullah Hikmat Ullah Shayma Alkobaisi 《Computers, Materials & Continua》 2025年第6期3675-3712,共38页
In this paper,we explore the ever-changing field ofDigital Twins(DT)in the Industrial Internet of Things(IIoT)context,emphasizing their critical role in advancing Industry 4.0 toward the frontiers of Industry 5.0.The ... In this paper,we explore the ever-changing field ofDigital Twins(DT)in the Industrial Internet of Things(IIoT)context,emphasizing their critical role in advancing Industry 4.0 toward the frontiers of Industry 5.0.The article explores the applications of DT in several industrial sectors and their smooth integration into the IIoT,focusing on the fundamentals of digital twins and emphasizing the importance of virtual-real integration.It discusses the emergence of DT,contextualizing its evolution within the framework of IIoT.The study categorizes the different types of DT,including prototypes and instances,and provides an in-depth analysis of the enabling technologies such as IoT,Artificial Intelligence(AI),Extended Reality(XR),cloud computing,and the Application Programming Interface(API).The paper demonstrates theDT advantages through the practical integration of real-world case studies,which highlights the technology’s exceptional capacity to improve traceability and fault detection within the context of the IIoT.This paper offers a focused,application-driven perspective on DTs in IIoT,specifically highlighting their role in key production phases such as designing,intelligent manufacturing,maintenance,resource management,automation,security,and safety.By emphasizing their potential to support human-centric,sustainable advancements in Industry 5.0,this study distinguishes itself from existing literature.It provides valuable insights that connect theoretical advancements with practical implementation,making it a crucial resource for researchers,practitioners,and industry professionals. 展开更多
关键词 Digital twin in industry integration of DT in IIoT artificial intelligence ai-driven DT applications
在线阅读 下载PDF
Tamper Detection in Multimodal Biometric Templates Using Fragile Watermarking and Artificial Intelligence
10
作者 Fatima Abu Siryeh Hussein Alrammahi Abdullahi Abdu İbrahim 《Computers, Materials & Continua》 2025年第9期5021-5046,共26页
Biometric template protection is essential for finger-based authentication systems,as template tampering and adversarial attacks threaten the security.This paper proposes a DCT-based fragile watermarking scheme incorp... Biometric template protection is essential for finger-based authentication systems,as template tampering and adversarial attacks threaten the security.This paper proposes a DCT-based fragile watermarking scheme incorporating AI-based tamper detection to improve the integrity and robustness of finger authentication.The system was tested against NIST SD4 and Anguli fingerprint datasets,wherein 10,000 watermarked fingerprints were employed for training.The designed approach recorded a tamper detection rate of 98.3%,performing 3–6%better than current DCT,SVD,and DWT-based watermarking approaches.The false positive rate(≤1.2%)and false negative rate(≤1.5%)were much lower compared to previous research,which maintained high reliability for template change detection.The system showed real-time performance,averaging 12–18 ms processing time per template,and is thus suitable for real-world biometric authentication scenarios.Quality analysis of fingerprints indicated that NFIQ scores were enhanced from 2.07 to 1.81,reflecting improved minutiae clarity and ridge structure preservation.The approach also exhibited strong resistance to compression and noise distortions,with the improvements in PSNR being 2 dB(JPEG compression Q=80)and the SSIM values rising by 3%–5%under noise attacks.Comparative assessment demonstrated that training with NIST SD4 data greatly improved the ridge continuity and quality of fingerprints,resulting in better match scores(260–295)when tested against Bozorth3.Smaller batch sizes(batch=2)also resulted in improved ridge clarity,whereas larger batch sizes(batch=8)resulted in distortions.The DCNN-based tamper detection model supported real-time classification,which greatly minimized template exposure to adversarial attacks and synthetic fingerprint forgeries.Results demonstrate that fragile watermarking with AI indeed greatly enhances fingerprint security,providing privacy-preserving biometric authentication with high robustness,accuracy,and computational efficiency. 展开更多
关键词 Biometric template security fragile watermarking deep learning tamper detection discrete cosine transform(DCT) fingerprint authentication NFIQ score optimization ai-driven watermarking structural similarity index(SSIM)
在线阅读 下载PDF
论生成式人工智能创作视频的版权保护模式重构——制度性失灵与技术性治理的耦合路径
11
作者 胡神松 王若宇 《青岛科技大学学报(社会科学版)》 2025年第3期82-91,共10页
生成式人工智能引发的创作范式革命正在解构传统著作权制度的价值基础。以Sora模型为代表的生成技术,通过数据驱动的参数重组,不但会消弭人类创作行为的独特性,还会导致“作者-作品”关联的断裂和侵权救济机制的系统性失灵,亟须重构著... 生成式人工智能引发的创作范式革命正在解构传统著作权制度的价值基础。以Sora模型为代表的生成技术,通过数据驱动的参数重组,不但会消弭人类创作行为的独特性,还会导致“作者-作品”关联的断裂和侵权救济机制的系统性失灵,亟须重构著作权制度。研究表明,借助区块链存证和参数转译技术,可以将算法黑箱中的风格迁移强度、改作可能性指数等技术变量转化为可量化的规范特征向量;通过动态耦合机制与三元效用函数,能够重塑裁判规则的生成逻辑,使赔偿标准与算法透明度形成弹性映射,进而推动司法认知范式向参数驱动型司法跃迁。因此,基于数据流拓扑分析和技术贡献度阈值设定,可以构建一种风险分级与预防性救济相结合的新型责任框架,为实现风险分配正义与创新激励的动态平衡、引领著作权制度向反身性法治秩序演进提供理论支撑与实践方案。 展开更多
关键词 生成式人工智能 著作权制度 参数驱动型司法 反身性法治秩序
在线阅读 下载PDF
数智时代人机协同教学的决策机制研究 被引量:1
12
作者 彭红超 韩小利 《远程教育杂志》 北大核心 2025年第2期53-61,93,共10页
人机协同教学是数智时代的典型教学范式,但因协同决策机制的缺失,其创新发展不尽如人意。针对这一问题,在解析各阶段人机协同教学理念及其决策样态的基础上,结合人机优势互补原则,构建了能够处理不同复杂度教学事务、兼容教师不同程度... 人机协同教学是数智时代的典型教学范式,但因协同决策机制的缺失,其创新发展不尽如人意。针对这一问题,在解析各阶段人机协同教学理念及其决策样态的基础上,结合人机优势互补原则,构建了能够处理不同复杂度教学事务、兼容教师不同程度参与的人机协同教学决策机制,包括业务逻辑连贯的教学事务的复杂度判定机制、人机协同决策的分流机制以及三条人机协同的教学决策路径。三条路径分别为:教师辅助人工智能(AI)进行决策的数据驱动协同路径、教师与AI在决策过程中相互配合以生成决策的数据启发协同路径以及教师统筹安排部分任务给AI决策的设计驱动协同路径。研究成果有助于业界同仁理解人机协同教学的底层机理,并能够为人机协同教学的本地化实践与优化提供有价值的参考。 展开更多
关键词 人机协同教学 教学决策 决策机制 数据驱动 数据启发 生成式人工智能
在线阅读 下载PDF
大语言模型赋能科技文献数据挖掘进展分析 被引量:3
13
作者 蔡祎然 胡正银 刘春江 《农业图书情报学报》 2025年第2期4-22,共19页
[目的/意义]科技文献蕴含丰富的领域知识与科学数据,可为人工智能驱动的科学研究(AI for Science,AI4S)提供高质量数据支撑。本文系统梳理大语言模型(Large Language Models,LLMs)在科技文献数据挖掘中的方法技术、软件工具及应用场景,... [目的/意义]科技文献蕴含丰富的领域知识与科学数据,可为人工智能驱动的科学研究(AI for Science,AI4S)提供高质量数据支撑。本文系统梳理大语言模型(Large Language Models,LLMs)在科技文献数据挖掘中的方法技术、软件工具及应用场景,探讨其研究方向与发展趋势。[方法/过程]本文基于文献调研与归纳总结,在方法技术层面,从文本知识、科学数据与图表信息分析了LLMs驱动的科技文献细粒度数据挖掘关键技术以及综合性知识生成的方法;在软件工具层面,归纳了主流LLMs科技文献数据挖掘与知识生成工具的方法技术、核心功能和适用场景;在应用场景层面,分析了科技文献数据挖掘应用于LLMs的实践价值。[结果/结论]在方法技术方面,通过动态提示学习框架与领域适配微调等技术,LLMs极大提升科技文献数据挖掘精度与效度;在软件工具方面,已初步形成从数据标注、数据挖掘、合成数据到知识生成的全流程LLMs科技文献数据挖掘工具链;在应用方面,科技文献数据可为LLMs提供专业化语料和高质量数据,LLMs推动科技文献从单维数据服务向多模态知识生成服务的范式演进。然而,当前仍面临领域知识表征深度不足、跨模态推理效率较低、知识生成可解释性欠缺等挑战。未来应着重研发具有可解释性与跨领域适应性的LLMs科技文献数据挖掘工具,集成“人在回路”的协同机制,促进科技文献数据挖掘从效率优化向知识创造转变。 展开更多
关键词 科技文献数据挖掘 大语言模型 AI4S 数据驱动 知识发现
在线阅读 下载PDF
人工智能驱动的基因编辑技术及其应用 被引量:4
14
作者 张子悦 周欣智 吕斌 《中国生物化学与分子生物学报》 北大核心 2025年第4期522-532,共11页
基因编辑技术在目标基因定位与切割方面具有高效性和精确性,已成为生物医学研究的重要工具。该技术不仅促进了对基因功能的基础研究,还为遗传性疾病的基因治疗和作物遗传改良提供了新的策略。随着人工智能技术的融入,特别是机器学习算... 基因编辑技术在目标基因定位与切割方面具有高效性和精确性,已成为生物医学研究的重要工具。该技术不仅促进了对基因功能的基础研究,还为遗传性疾病的基因治疗和作物遗传改良提供了新的策略。随着人工智能技术的融入,特别是机器学习算法的应用,基因编辑的设计与执行变得更加智能化。AI技术通过预测分析和模式识别,优化了sgRNA的设计,提高了编辑的特异性和效率,同时降低了非目标效应的风险。此外,AI在大规模基因组数据的解析中也发挥着关键作用,为理解复杂的生物学过程和疾病机制提供了新的视角。本文综述了数据驱动的基因编辑技术在靶点精准化、安全性提升和个性化治疗方面的研究进展,旨在为基因编辑技术领域的研究者提供参考和启发,推动人工智能在基因编辑技术中的应用和发展。 展开更多
关键词 基因编辑 CRISPR/Cas 人工智能 数据驱动
原文传递
AI数据令旗:科技学术期刊运行模式创新探索 被引量:1
15
作者 马峥 《编辑学报》 北大核心 2025年第4期367-373,共7页
我国世界一流科技期刊建设不仅需要弥补现实的短板差距,更需要面向未来的产业创新。为了在开放科学范式不断发展和人工智能技术应用不断深化的时代背景下,应对全球学术期刊出版领域的激烈竞争和发展过程中所带来的新问题,本文提出学术... 我国世界一流科技期刊建设不仅需要弥补现实的短板差距,更需要面向未来的产业创新。为了在开放科学范式不断发展和人工智能技术应用不断深化的时代背景下,应对全球学术期刊出版领域的激烈竞争和发展过程中所带来的新问题,本文提出学术期刊出版模式创新的驱动力主要包括迫切需要解决的“两头在外”现实问题驱动和AI应用颠覆学术期刊挑战的产业变革驱动2方面。为了避免全链条被AI替代后学术期刊出版被完全颠覆的状况,学术期刊出版应突破传统格局,寻求创新运行模式,探索打造AI颠覆性应用所形成的创新平台。文中提出“AI数据令旗”学术期刊运行模式,整合数据资源开放生态和人工智能技术应用,具有学术期刊出版深度参与科研组织、主动释放开放数据和开放资源的价值及将技术与资源整合成为学术期刊出版的核心竞争力等创新点。其作为我国原创学术期刊出版运行模式,可以有效应对“两头在外”的问题,是中国为全球行业发展作出的贡献,应予以重视和推广。 展开更多
关键词 AI数字令旗 开放科学 开放数据 期刊出版 两头在外
原文传递
基于AI的家庭宽带用户光链路断纤及投诉预测技术
16
作者 李洁 徐佳琪 刘湘龙 《邮电设计技术》 2025年第8期14-18,共5页
针对PON线路及家庭网络故障率高、运维响应滞后等问题,提出一种AI赋能的智能光网络运维方案。通过融合多源数据(性能、告警、用户行为),构建断纤投诉预测模型,采用密度聚类(DBSCAN)过滤无效告警,基于累积分布函数(CDF)量化用户活跃度,... 针对PON线路及家庭网络故障率高、运维响应滞后等问题,提出一种AI赋能的智能光网络运维方案。通过融合多源数据(性能、告警、用户行为),构建断纤投诉预测模型,采用密度聚类(DBSCAN)过滤无效告警,基于累积分布函数(CDF)量化用户活跃度,并利用随机森林(RF)算法实现区域自适应风险评估。方案部署后,用户投诉率压降19%,断纤工单准确率达80%,推动故障处理从“被动响应”向“主动预防”转型,显著提升运维效率与用户满意度,为光接入网智能化升级提供实践参考。 展开更多
关键词 PON网络 AI赋能 智能光网络运维 断纤预测 用户投诉预测 密度聚类算法 随机森林算法
在线阅读 下载PDF
AI时代共情驱动下产品设计教学中用户洞察力的培养
17
作者 冯玘 《信息与电脑》 2025年第18期200-202,共3页
人工智能(Artificial Intelligence,AI)技术的渗透正在重塑产品设计教育范式。迎接这一变化的关键在于建立以共情能力为核心的教学体系,聚焦“有温度的技术赋能”,构建理论、实践、评估三大创新模块。这种教育范式的革新致力于培养具备... 人工智能(Artificial Intelligence,AI)技术的渗透正在重塑产品设计教育范式。迎接这一变化的关键在于建立以共情能力为核心的教学体系,聚焦“有温度的技术赋能”,构建理论、实践、评估三大创新模块。这种教育范式的革新致力于培养具备技术与人文双核竞争力的新时代设计师,使其在未来的产品创新领域中,既能释放人工智能的技术势能,又能守护以人为本的精神内核。 展开更多
关键词 产品设计教育 AI驱动 用户洞察 共情能力 技术赋能 人文内核
在线阅读 下载PDF
面向公众的AI驱动健康教育视频内容推荐系统的设计与优化 被引量:1
18
作者 朱虎韬 《办公自动化》 2025年第7期55-57,共3页
短视频模式的发展极大地推动内容推荐系统的优化,这为健康食品、科普视频等类型的视频推广也构建良好的外部环境。文章就此对互联网媒体跨平台融合背景下的健康教育视频内容推荐系统进行分析,探讨其架构和算法选择,从而说明整体视频内... 短视频模式的发展极大地推动内容推荐系统的优化,这为健康食品、科普视频等类型的视频推广也构建良好的外部环境。文章就此对互联网媒体跨平台融合背景下的健康教育视频内容推荐系统进行分析,探讨其架构和算法选择,从而说明整体视频内容推荐系统的建设。与此同时,AI技术的优化也为系统建设提供良好的技术支持,深度学习算法能更好地识别用户未能直接标注的视频偏好,通过更为丰富的视频浏览和搜索特征细节补充与完善原有视频内容推荐系统的不足,通过更为丰富的数据化标签适应于用户规模的增长,并相应提升用户体验,且相应优化资源调度能力而提升系统响应速度和实时性,从而为健康教育的个性化发展提供良好环境。 展开更多
关键词 AI驱动 科普视频 健康教育视频 内容推荐系统
在线阅读 下载PDF
探索智算中心数字孪生+AI节能双擎
19
作者 周平 赵宇衡 +2 位作者 朱伟 迮天怡 朱晓 《电信工程技术与标准化》 2025年第S1期114-120,共7页
面对不断攀升的能耗与碳排压力,本文以数字孪生为底座,构建与物理供冷系统实时映射、双向交互的虚拟镜像,实现能耗、碳排的沉浸式可视、可诊、可预测,打造智算机房“智慧大脑”与全新维护范式。进一步融合AI粒子群算法,从机理、部署到... 面对不断攀升的能耗与碳排压力,本文以数字孪生为底座,构建与物理供冷系统实时映射、双向交互的虚拟镜像,实现能耗、碳排的沉浸式可视、可诊、可预测,打造智算机房“智慧大脑”与全新维护范式。进一步融合AI粒子群算法,从机理、部署到参数自优进行全链路闭环,秒级寻优冷冻水机组运行策略,输出动态节能方案,形成高效、灵活、可持续的“零碳”引擎。 展开更多
关键词 智算中心 数字孪生 AI能效优化 节能
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部