Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ...A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.展开更多
Background: Pancreatic cancer is one of the most lethal malignancies, with postoperative recurrence severely affecting patient survival and prognosis. This study aims to develop and validate a clinical prediction mode...Background: Pancreatic cancer is one of the most lethal malignancies, with postoperative recurrence severely affecting patient survival and prognosis. This study aims to develop and validate a clinical prediction model for postoperative recurrence in pancreatic cancer patients, incorporating multiple preoperative, intraoperative, and postoperative factors to assist clinical decision-making. Methods: A retrospective study was conducted on 216 patients who underwent surgical treatment for pancreatic malignancy at the First Affiliated Hospital of Chongqing Medical University between January 2015 and January 2023. An independent external validation cohort of 76 patients from the Second Affiliated Hospital of Chongqing Medical University was used to validate the model. Seven independent risk factors for postoperative recurrence were identified through univariate and multivariate Cox regression analyses. The model’s performance was evaluated using the concordance index (C-index) and ROC curves, and its accuracy and clinical value were assessed using calibration curves and decision curve analysis (DCA). Results: The predictive model demonstrated good discriminatory power, with a C-index of 0.72 in the training cohort and 0.66 in the validation cohort. The ROC curves for predicting recurrence at 3, 6, and 12 months postoperatively showed AUC values ranging from 0.72 to 0.83, indicating strong predictive value. Calibration curves and DCA confirmed the model’s accuracy and clinical utility. Conclusion: This study successfully developed and validated a clinical prediction model that incorporates seven independent risk factors for postoperative recurrence in pancreatic cancer. The model provides a useful tool for predicting recurrence risk, aiding in the identification of high-risk patients, and informing clinical decision-making.展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
AIM:To explore the relationship between matrix metalloproteinases(MMPs)expression levels in the tumor and the prognosis of uveal melanoma(UM)and to construct prognostic prediction models.METHODS:Transcriptome sequenci...AIM:To explore the relationship between matrix metalloproteinases(MMPs)expression levels in the tumor and the prognosis of uveal melanoma(UM)and to construct prognostic prediction models.METHODS:Transcriptome sequencing data from 17 normal choroid tissues and 53 UM tumor tissues were collected.Based on the differential gene expression levels and their function,MMPs family was selected for establishing risk-score system and prognostic prediction model with machine learning.Tumor microenvironment(TME)analysis was also applied for the impact of immune cell infiltration on prognosis of the disease.RESULTS:Eight MMPs were significantly different expression levels between normal and the tumor tissues.MMP-2 and MMP-28 were selected to construct a risk-score system and divided patients accordingly into high-and low-risk groups.The prediction model based on the risk-score achieved an accuracy of approximately 80%at 1-,3-,and 5-year after diagnosis.Besides,a Nomogram prognostic prediction model which based on risk-score and pathological type(independent prognostic factors after Cox regression analysis)demonstrated good consistency between the predicted outcomes at 1-,3-,and 5-year after diagnosis and the actual prognosis of patients.TME analysis revealed that the high-risk group exhibited higher immune and stromal scores and increased infiltration of tumor-associated macrophages(TAMs)and regulatory T cells compared to the low-risk group.CONCLUSION:Based on MMP-2 and MMP-28 expression levels,our prediction model demonstrates accurate long-term prognosis prediction for UM patients.The aggregation of TAMs and regulatory T cells in the TME of UM may be associated with an unfavorable prognosis.展开更多
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ...Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.展开更多
BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk...BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk factors for recurrence remain unknown.AIM To comprehensively explore risk factors for short-term recurrence of CPs after endoscopic surgery and develop a nomogram prediction model.METHODS Overall,362 patients who underwent endoscopic polypectomy between January 2022 and January 2024 at Nanjing Jiangbei Hospital were included.We screened basic demographic data,clinical and polyp characteristics,surgery-related information,and independent risk factors for CPs recurrence using univariate and multivariate logistic regression analyses.The multivariate analysis results were used to construct a nomogram prediction model,internally validated using Bootstrapping,with performance evaluated using area under the curve(AUC),calibration curve,and decision curve analysis.RESULTS CP re-occurred in 166(45.86%)of the 362 patients within 1 year post-surgery.Multivariate logistic regression analysis showed that age(OR=1.04,P=0.002),alcohol consumption(OR=2.07,P=0.012),Helicobacter pylori infection(OR=2.34,P<0.001),polyp number>2(OR=1.98,P=0.005),sessile polyps(OR=2.10,P=0.006),and adenomatous pathological type(OR=3.02,P<0.001)were independent risk factors for post-surgery recurrence.The nomogram prediction model showed good discriminatory(AUC=0.73)and calibrating power,and decision curve analysis showed that the model had good clinical benefit at risk probabilities>20%.CONCLUSION We identified multiple independent risk factors for short-term recurrence after endoscopic surgery.The nomogram prediction model showed a certain degree of differentiation,calibration,and potential clinical applicability.展开更多
The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more acc...The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more accurately,a novel hypothesis based on Orowan's theory was proposed.The variation in the thickness of each differential element at different positions was considered to establish the analytical model.According to the characteristics of bimetallic composite plate rolling,the rolling deformation can be divided into forward and backward slip zones.The initial thickness ratio after rolling was predetermined by the thickness ratio before rolling;the rolling force balance of the upper and lower rollers was considered the convergence condition;and the final thickness ratio of the bimetallic composite plate was obtained by iterative calculation.The calculation results of the analytical model were compared with the measured and simulated data.The results showed that the errors in the calculation of the rolling force and thickness ratio were both less than 10%.The analytical model has high precision,meets engineering requirements,and has important reference significance for rolling process optimization and thickness ratio prediction.展开更多
BACKGROUND Rabies is a zoonotic viral disease affecting the central nervous system,caused by the rabies virus,with a case-fatality rate of 100%once symptoms appear.AIM To analyze high-risk factors associated with ment...BACKGROUND Rabies is a zoonotic viral disease affecting the central nervous system,caused by the rabies virus,with a case-fatality rate of 100%once symptoms appear.AIM To analyze high-risk factors associated with mental disorders induced by rabies vaccination and to construct a risk prediction model to inform strategies for improving patients’mental health.METHODS Patients who received rabies vaccinations at the Department of Infusion Yiwu Central Hospital between August 2024 and July 2025 were included,totaling 384 cases.Data were collected from medical records and included demographic characteristics(age,gender,occupation),lifestyle habits,and details regarding vaccine type,dosage,and injection site.The incidence of psychiatric disorders following vaccination was assessed using standardized anxiety and depression rating scales.Patients were categorized into two groups based on the presence or absence of anxiety and depression symptoms:The psychiatric disorder group and the non-psychiatric disorder group.Differences between the two groups were compared,and high-risk factors were identified using multivariate logistic regression analysis.A predictive model was then developed based on these factors to evaluate its predictive performance.RESULTS Among the 384 patients who received rabies vaccinations,36 cases(9.38%)were diagnosed with anxiety,52 cases(13.54%)with depression,and 88 cases(22.92%)with either condition.Logistic regression analysis identified the following signi ficant risk factors for psychiatric disorders:Education level of primary school or below,exposure site at the head and neck,exposure classified as grade III,family status of divorced/widowed/unmarried/living alone,number of wounds greater than one,and low awareness of rabies prevention and control(P<0.05).The risk prediction model demonstrated good performance,with an area under the receiver operating characteristic curve of 0.859,a specificity of 74.42%,and a sensitivity of 93.02%.CONCLUSION In real-world settings,psychiatric disorders following rabies vaccination are relatively common and are associated with factors such as lower education level,higher exposure severity,vulnerable family status,and limited awareness of rabies prevention and control.The developed risk prediction model may aid in early identification of high-risk individuals and support timely clinical intervention.展开更多
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was...Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.展开更多
Machine learning(ML)models are widely used for predicting undrained shear strength(USS),but interpretability has been a limitation in various studies.Therefore,this study introduced shapley additive explanations(SHAP)...Machine learning(ML)models are widely used for predicting undrained shear strength(USS),but interpretability has been a limitation in various studies.Therefore,this study introduced shapley additive explanations(SHAP)to clarify the contribution of each input feature in USS prediction.Three ML models,artificial neural network(ANN),extreme gradient boosting(XGBoost),and random forest(RF),were employed,with accuracy evaluated using mean squared error,mean absolute error,and coefficient of determination(R^(2)).The RF achieved the highest performance with an R^(2) of 0.82.SHAP analysis identified pre-consolidation stress as a key contributor to USS prediction.SHAP dependence plots reveal that the ANN captures smoother,linear feature-output relationships,while the RF handles complex,non-linear interactions more effectively.This suggests a non-linear relationship between USS and input features,with RF outperforming ANN.These findings highlight SHAP’s role in enhancing interpretability and promoting transparency and reliability in ML predictions for geotechnical applications.展开更多
Objective:To construct a clinical prediction model of acupuncture treatment for diminished ovarian reserve(DOR)based on a machine learning algorithm to provide a clinical prediction of acupuncture for ameliorating pre...Objective:To construct a clinical prediction model of acupuncture treatment for diminished ovarian reserve(DOR)based on a machine learning algorithm to provide a clinical prediction of acupuncture for ameliorating pregnancy outcomes in DOR.Methods:We enrolled 377 DOR patients treated with acupuncture and with records of pregnancy outcomes(139 cases of pregnancy and 238 cases failed)exported from the International Patient Registry Platform of Acupuncture-moxibustion(IPRPAM).The predictive variables were determined using Spearman’s correlation analysis and feature engineering methods.The model was constructed by adopting logistic regression,naïve Bayes,random forest,support vector machine,extreme gradient boosting,the knearest neighbor algorithm,linear discriminant analysis,and neural network methods.The models were validated by the area under the curve(AUC),accuracy(ACC),and importance sequencing,and individual pregnancy prediction was conducted for the best-performing model.Results:The key factors determining pregnancy after acupuncture in patients with DOR were age,luteinizing hormone(LH)level after treatment,follicle-stimulating hormone(FSH)level after treatment,the ratio of FSH to LH(FSH/LH)after treatment,and history of acupuncture treatment.Random forest model ACC was 0.95,Fβwas 0.93,Logloss was 0.30,Logloss value was the lowest,the model variables exhibited the highest accuracy and precision.Conclusion:The random forest model for the effects of acupuncture on pregnancy outcomes in patients with DOR,constructed based on the IPRPAM,presents a favorable value for clinical application.展开更多
Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions ba...Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences.However,these models frequently fail to account for the difculties arising from limited training data and model size,which restrict their capacity to learn and capture the intricate patterns within microblogging data.To overcome this limitation,we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction(ALL-RP),which incorporates two key steps:(1)extracting features from post content and social interactions using a large language model with extensive parameters and trained on a vast corpus,and(2)performing semantic and temporal adaptation to transfer the large language model’s knowledge of natural language,vision,and graph structures to reposting prediction tasks.Specifcally,the temporal adapter in the ALL-RP model captures multi-dimensional temporal information from evolving patterns of user topic interests and social preferences,thereby providing a more realistic refection of user attributes.Additionally,to enhance the robustness of feature modeling,we introduce a variant of the temporal adapter that implements multiple temporal adaptations in parallel while maintaining structural simplicity.Experimental results on real-world datasets demonstrate that the ALL-RP model surpasses state-of-the-art models in predicting both individual user reposting behavior and group sharing behavior,with performance gains of 2.81%and 4.29%,respectively.展开更多
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study...Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.展开更多
Objectives:This systematic review aimed to assess the properties and feasibility of existing risk prediction models for post-intensive care syndrome outcomes in adult survivors of critical illness.Methods:As of Novemb...Objectives:This systematic review aimed to assess the properties and feasibility of existing risk prediction models for post-intensive care syndrome outcomes in adult survivors of critical illness.Methods:As of November 1,2023,Cochrane Library,PubMed,Embase,CINAHL,Web of Science,PsycInfo,China National Knowledge Infrastructure(CNKI),SinoMed,Wanfang database,and China Science and Technology Journal Database(VIP)were searched.Following the literature screening process,we extracted data encompassing participant sources,post-intensive care syndrome(PICS)outcomes,sample sizes,missing data,predictive factors,model development methodologies,and metrics for model performance and evaluation.We conducted a review and classification of the PICS domains and predictive factors identified in each study.The Prediction Model Risk of Bias Assessment Tool was employed to assess the quality and applicability of the studies.Results:This systematic review included a total of 16 studies,comprising two cognitive impairment studies,four psychological impairment studies,eight physiological impairment studies,and two studies on all three domains.The discriminative ability of prediction models measured by area under the receiver operating characteristic curve was 0.68e0.90.The predictive performance of most models was excellent,but most models were biased and overfitted.All predictive factors tend to encompass age,pre-ICU functional impairment,in-ICU experiences,and early-onset new symptoms.Conclusions:This review identified 16 prediction models and the predictive factors for PICS.Nonetheless,due to the numerous methodological and reporting shortcomings identified in the studies under review,clinicians should exercise caution when interpreting the predictions made by these models.To avert the development of PICS,it is imperative for clinicians to closely monitor prognostic factors,including the in-ICU experience and early-onset new symptoms.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder increasingly linked with hypertension,posing significant health risks.The need for a predictive model tailored for T2DM patients is evident,as...BACKGROUND Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder increasingly linked with hypertension,posing significant health risks.The need for a predictive model tailored for T2DM patients is evident,as current tools may not fully capture the unique risks in this population.This study hypothesizes that a nomogram incorporating specific risk factors will improve hypertension risk prediction in T2DM patients.AIM To develop and validate a nomogram prediction model for hypertension in T2DM patients.METHODS A retrospective observational study was conducted using data from 26850 T2DM patients from the Anhui Provincial Primary Medical and Health Information Management System(2022 to 2024).The study included patients aged 18 and above with available data on key variables.Exclusion criteria were type 1 diabetes,gestational diabetes,insufficient data,secondary hypertension,and abnormal liver and kidney function.The Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression were used to construct the nomogram,which was validated on separate datasets.RESULTS The developed nomogram for T2DM patients incorporated age,low-density lipoprotein,body mass index,diabetes duration,and urine protein levels as key predictive factors.In the training dataset,the model demonstrated a high discriminative power with an area under the receiver operating characteristic curve(AUC)of 0.823,indicating strong predictive accuracy.The validation dataset confirmed these findings with an AUC of 0.812.The calibration curve analysis showed excellent agreement between predicted and observed outcomes,with absolute errors of 0.017 for the training set and 0.031 for the validation set.The Hosmer-Lemeshow test yielded non-significant results for both sets(χ^(2)=7.066,P=0.562 for training;χ^(2)=6.122,P=0.709 for validation),suggesting good model fit.CONCLUSION The nomogram effectively predicts hypertension risk in T2DM patients,offering a valuable tool for personalized risk assessment and guiding targeted interventions.This model provides a significant advancement in the management of T2DM and hypertension comorbidity.展开更多
Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for ...Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method.展开更多
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes...The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.展开更多
This letter addressed the impactful study by Zhong et al,which introduced a risk prediction and stratification model for surgical adverse events following minimally invasive esophagectomy.By identifying key risk facto...This letter addressed the impactful study by Zhong et al,which introduced a risk prediction and stratification model for surgical adverse events following minimally invasive esophagectomy.By identifying key risk factors such as chronic obstructive pulmonary disease and hypoalbuminemia,the model demonstrated strong predictive accuracy and offered a pathway to personalized perioperative care.This correspondence highlighted the clinical significance,emphasizing its potential to optimize patient outcomes through tailored inter-ventions.Further prospective validation and application across diverse settings are essential to realize its full potential in advancing esophageal surgery practices.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed t...BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed that CRC patients may experience postoperative cognitive dysfunction(POCD).AIM To establish a risk prediction model for POCD in CRC patients and investigate the preventive value of dexmedetomidine(DEX).METHODS A retrospective analysis was conducted on clinical data from 140 CRC patients who underwent surgery at the People’s Hospital of Qian Nan from February 2020 to May 2024.Patients were allocated into a modeling group(n=98)and a validation group(n=42)in a 7:3 ratio.General clinical data were collected.Additionally,in the modeling group,patients who received DEX preoperatively were incorporated into the observation group(n=54),while those who did not were placed in the control group(n=44).The incidence of POCD was recorded for both cohorts.Data analysis was performed using statistical product and service solutions 20.0,with t-tests orχ^(2) tests employed for group comparisons based on the data type.Least absolute shrinkage and selection operator regression was applied to identify influencing factors and reduce the impact of multicollinear predictors among variables.Multivariate analysis was carried out using Logistic regression.Based on the identified risk factors,a risk prediction model for POCD in CRC patients was developed,and the predictive value of these risk factors was evaluated.RESULTS Significant differences were observed between the cognitive dysfunction group and the non-cognitive dysfunction group in diabetes status,alcohol consumption,years of education,anesthesia duration,intraoperative blood loss,intraoperative hypoxemia,use of DEX during surgery,intraoperative use of vasoactive drugs,surgical time,systemic inflammatory response syndrome(SIRS)score(P<0.05).Multivariate Logistic regression analysis identified that diabetes[odds ratio(OR)=4.679,95%confidence interval(CI)=1.382-15.833],alcohol consumption(OR=5.058,95%CI:1.255-20.380),intraoperative hypoxemia(OR=4.697,95%CI:1.380-15.991),no use of DEX during surgery(OR=3.931,95%CI:1.383-11.175),surgery duration≥90 minutes(OR=4.894,95%CI:1.377-17.394),and a SIRS score≥3(OR=4.133,95%CI:1.323-12.907)were independent risk factors for POCD in CRC patients(P<0.05).A risk prediction model for POCD was constructed using diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score as factors.A receiver operator characteristic curve analysis of these factors revealed the model’s predictive sensitivity(88.56%),specificity(70.64%),and area under the curve(AUC)(AUC=0.852,95%CI:0.773-0.919).The model was validated using 42 CRC patients who met the inclusion criteria,demonstrating sensitivity(80.77%),specificity(81.25%),and accuracy(80.95%),and AUC(0.805)in diagnosing cognitive impairment,with a 95%CI:0.635-0.896.CONCLUSION Logistic regression analysis identified that diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score vigorously influenced the occurrence of POCD.The risk prediction model based on these factors demonstrated good predictive performance for POCD in CRC individuals.This study offers valuable insights for clinical practice and contributes to the prevention and management of POCD under CRC circumstances.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金supported by the National Key R&D Program of China(No.2021YFB3400900)the National Natural Science Foundation of China(Nos.52175373,52205435)+1 种基金Natural Science Foundation of Hunan Province,China(No.2022JJ40621)the Innovation Fund of National Commercial Aircraft Manufacturing Engineering Technology Center,China(No.COMACSFGS-2022-1875)。
文摘A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.
文摘Background: Pancreatic cancer is one of the most lethal malignancies, with postoperative recurrence severely affecting patient survival and prognosis. This study aims to develop and validate a clinical prediction model for postoperative recurrence in pancreatic cancer patients, incorporating multiple preoperative, intraoperative, and postoperative factors to assist clinical decision-making. Methods: A retrospective study was conducted on 216 patients who underwent surgical treatment for pancreatic malignancy at the First Affiliated Hospital of Chongqing Medical University between January 2015 and January 2023. An independent external validation cohort of 76 patients from the Second Affiliated Hospital of Chongqing Medical University was used to validate the model. Seven independent risk factors for postoperative recurrence were identified through univariate and multivariate Cox regression analyses. The model’s performance was evaluated using the concordance index (C-index) and ROC curves, and its accuracy and clinical value were assessed using calibration curves and decision curve analysis (DCA). Results: The predictive model demonstrated good discriminatory power, with a C-index of 0.72 in the training cohort and 0.66 in the validation cohort. The ROC curves for predicting recurrence at 3, 6, and 12 months postoperatively showed AUC values ranging from 0.72 to 0.83, indicating strong predictive value. Calibration curves and DCA confirmed the model’s accuracy and clinical utility. Conclusion: This study successfully developed and validated a clinical prediction model that incorporates seven independent risk factors for postoperative recurrence in pancreatic cancer. The model provides a useful tool for predicting recurrence risk, aiding in the identification of high-risk patients, and informing clinical decision-making.
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金Supported by the National Natural Science Foundation of China(No.82220108017,No.82141128,No.82101180)Beijing Natural Science Foundation(No.Z220012)+3 种基金The Capital Health Research and Development of Special(No.2020-1-2052)Science&Technology Project of Beijing Municipal Science&Technology Commission(No.Z201100005520045)Sanming Project of Medicine in Shenzhen(No.SZSM202311018)Beijing Science&Technology Development of TCM(No.BJZYYB-2023-17).
文摘AIM:To explore the relationship between matrix metalloproteinases(MMPs)expression levels in the tumor and the prognosis of uveal melanoma(UM)and to construct prognostic prediction models.METHODS:Transcriptome sequencing data from 17 normal choroid tissues and 53 UM tumor tissues were collected.Based on the differential gene expression levels and their function,MMPs family was selected for establishing risk-score system and prognostic prediction model with machine learning.Tumor microenvironment(TME)analysis was also applied for the impact of immune cell infiltration on prognosis of the disease.RESULTS:Eight MMPs were significantly different expression levels between normal and the tumor tissues.MMP-2 and MMP-28 were selected to construct a risk-score system and divided patients accordingly into high-and low-risk groups.The prediction model based on the risk-score achieved an accuracy of approximately 80%at 1-,3-,and 5-year after diagnosis.Besides,a Nomogram prognostic prediction model which based on risk-score and pathological type(independent prognostic factors after Cox regression analysis)demonstrated good consistency between the predicted outcomes at 1-,3-,and 5-year after diagnosis and the actual prognosis of patients.TME analysis revealed that the high-risk group exhibited higher immune and stromal scores and increased infiltration of tumor-associated macrophages(TAMs)and regulatory T cells compared to the low-risk group.CONCLUSION:Based on MMP-2 and MMP-28 expression levels,our prediction model demonstrates accurate long-term prognosis prediction for UM patients.The aggregation of TAMs and regulatory T cells in the TME of UM may be associated with an unfavorable prognosis.
文摘Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.
文摘BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk factors for recurrence remain unknown.AIM To comprehensively explore risk factors for short-term recurrence of CPs after endoscopic surgery and develop a nomogram prediction model.METHODS Overall,362 patients who underwent endoscopic polypectomy between January 2022 and January 2024 at Nanjing Jiangbei Hospital were included.We screened basic demographic data,clinical and polyp characteristics,surgery-related information,and independent risk factors for CPs recurrence using univariate and multivariate logistic regression analyses.The multivariate analysis results were used to construct a nomogram prediction model,internally validated using Bootstrapping,with performance evaluated using area under the curve(AUC),calibration curve,and decision curve analysis.RESULTS CP re-occurred in 166(45.86%)of the 362 patients within 1 year post-surgery.Multivariate logistic regression analysis showed that age(OR=1.04,P=0.002),alcohol consumption(OR=2.07,P=0.012),Helicobacter pylori infection(OR=2.34,P<0.001),polyp number>2(OR=1.98,P=0.005),sessile polyps(OR=2.10,P=0.006),and adenomatous pathological type(OR=3.02,P<0.001)were independent risk factors for post-surgery recurrence.The nomogram prediction model showed good discriminatory(AUC=0.73)and calibrating power,and decision curve analysis showed that the model had good clinical benefit at risk probabilities>20%.CONCLUSION We identified multiple independent risk factors for short-term recurrence after endoscopic surgery.The nomogram prediction model showed a certain degree of differentiation,calibration,and potential clinical applicability.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0707300)Major Program of National Natural Science Foundation of China(Grant No.U22A20188)+1 种基金General Program of National Natural Science Foundation of China(Grant No.51974196)Postdoctoral Science Foundation of China(Grant No.201903D421047)。
文摘The prediction of the rolling force and thickness ratio plays an important role in the development and application of bimetallic composite plates.To analyze the rolling force of the bimetallic composite plate more accurately,a novel hypothesis based on Orowan's theory was proposed.The variation in the thickness of each differential element at different positions was considered to establish the analytical model.According to the characteristics of bimetallic composite plate rolling,the rolling deformation can be divided into forward and backward slip zones.The initial thickness ratio after rolling was predetermined by the thickness ratio before rolling;the rolling force balance of the upper and lower rollers was considered the convergence condition;and the final thickness ratio of the bimetallic composite plate was obtained by iterative calculation.The calculation results of the analytical model were compared with the measured and simulated data.The results showed that the errors in the calculation of the rolling force and thickness ratio were both less than 10%.The analytical model has high precision,meets engineering requirements,and has important reference significance for rolling process optimization and thickness ratio prediction.
基金Supported by the 2024 Yiwu City Research Plan Project,No.24-3-102.
文摘BACKGROUND Rabies is a zoonotic viral disease affecting the central nervous system,caused by the rabies virus,with a case-fatality rate of 100%once symptoms appear.AIM To analyze high-risk factors associated with mental disorders induced by rabies vaccination and to construct a risk prediction model to inform strategies for improving patients’mental health.METHODS Patients who received rabies vaccinations at the Department of Infusion Yiwu Central Hospital between August 2024 and July 2025 were included,totaling 384 cases.Data were collected from medical records and included demographic characteristics(age,gender,occupation),lifestyle habits,and details regarding vaccine type,dosage,and injection site.The incidence of psychiatric disorders following vaccination was assessed using standardized anxiety and depression rating scales.Patients were categorized into two groups based on the presence or absence of anxiety and depression symptoms:The psychiatric disorder group and the non-psychiatric disorder group.Differences between the two groups were compared,and high-risk factors were identified using multivariate logistic regression analysis.A predictive model was then developed based on these factors to evaluate its predictive performance.RESULTS Among the 384 patients who received rabies vaccinations,36 cases(9.38%)were diagnosed with anxiety,52 cases(13.54%)with depression,and 88 cases(22.92%)with either condition.Logistic regression analysis identified the following signi ficant risk factors for psychiatric disorders:Education level of primary school or below,exposure site at the head and neck,exposure classified as grade III,family status of divorced/widowed/unmarried/living alone,number of wounds greater than one,and low awareness of rabies prevention and control(P<0.05).The risk prediction model demonstrated good performance,with an area under the receiver operating characteristic curve of 0.859,a specificity of 74.42%,and a sensitivity of 93.02%.CONCLUSION In real-world settings,psychiatric disorders following rabies vaccination are relatively common and are associated with factors such as lower education level,higher exposure severity,vulnerable family status,and limited awareness of rabies prevention and control.The developed risk prediction model may aid in early identification of high-risk individuals and support timely clinical intervention.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242213,U2142213,42305167,42175105)。
文摘Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘Machine learning(ML)models are widely used for predicting undrained shear strength(USS),but interpretability has been a limitation in various studies.Therefore,this study introduced shapley additive explanations(SHAP)to clarify the contribution of each input feature in USS prediction.Three ML models,artificial neural network(ANN),extreme gradient boosting(XGBoost),and random forest(RF),were employed,with accuracy evaluated using mean squared error,mean absolute error,and coefficient of determination(R^(2)).The RF achieved the highest performance with an R^(2) of 0.82.SHAP analysis identified pre-consolidation stress as a key contributor to USS prediction.SHAP dependence plots reveal that the ANN captures smoother,linear feature-output relationships,while the RF handles complex,non-linear interactions more effectively.This suggests a non-linear relationship between USS and input features,with RF outperforming ANN.These findings highlight SHAP’s role in enhancing interpretability and promoting transparency and reliability in ML predictions for geotechnical applications.
基金Supported by the Qihuang Scholars Program in 202114th Five-Year National Key R&D Program Project:2022YFC3500504。
文摘Objective:To construct a clinical prediction model of acupuncture treatment for diminished ovarian reserve(DOR)based on a machine learning algorithm to provide a clinical prediction of acupuncture for ameliorating pregnancy outcomes in DOR.Methods:We enrolled 377 DOR patients treated with acupuncture and with records of pregnancy outcomes(139 cases of pregnancy and 238 cases failed)exported from the International Patient Registry Platform of Acupuncture-moxibustion(IPRPAM).The predictive variables were determined using Spearman’s correlation analysis and feature engineering methods.The model was constructed by adopting logistic regression,naïve Bayes,random forest,support vector machine,extreme gradient boosting,the knearest neighbor algorithm,linear discriminant analysis,and neural network methods.The models were validated by the area under the curve(AUC),accuracy(ACC),and importance sequencing,and individual pregnancy prediction was conducted for the best-performing model.Results:The key factors determining pregnancy after acupuncture in patients with DOR were age,luteinizing hormone(LH)level after treatment,follicle-stimulating hormone(FSH)level after treatment,the ratio of FSH to LH(FSH/LH)after treatment,and history of acupuncture treatment.Random forest model ACC was 0.95,Fβwas 0.93,Logloss was 0.30,Logloss value was the lowest,the model variables exhibited the highest accuracy and precision.Conclusion:The random forest model for the effects of acupuncture on pregnancy outcomes in patients with DOR,constructed based on the IPRPAM,presents a favorable value for clinical application.
文摘Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences.However,these models frequently fail to account for the difculties arising from limited training data and model size,which restrict their capacity to learn and capture the intricate patterns within microblogging data.To overcome this limitation,we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction(ALL-RP),which incorporates two key steps:(1)extracting features from post content and social interactions using a large language model with extensive parameters and trained on a vast corpus,and(2)performing semantic and temporal adaptation to transfer the large language model’s knowledge of natural language,vision,and graph structures to reposting prediction tasks.Specifcally,the temporal adapter in the ALL-RP model captures multi-dimensional temporal information from evolving patterns of user topic interests and social preferences,thereby providing a more realistic refection of user attributes.Additionally,to enhance the robustness of feature modeling,we introduce a variant of the temporal adapter that implements multiple temporal adaptations in parallel while maintaining structural simplicity.Experimental results on real-world datasets demonstrate that the ALL-RP model surpasses state-of-the-art models in predicting both individual user reposting behavior and group sharing behavior,with performance gains of 2.81%and 4.29%,respectively.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3706901)the National Natural Science Foundation of China(No.52090041)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC 001).
文摘Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.
基金supported by the Scientific Research Project of Shanghai Municipal Health Commission(202140047)the Characteristic Research Project of Shanghai General Hospital(CCTR-2022N03)the Technology Standardization Management and Promotion Project of Shanghai Shenkang Hospital Development Center(SHDC22022219)and the funding organization has played no roles in the survey's design,implementation,and analysis.
文摘Objectives:This systematic review aimed to assess the properties and feasibility of existing risk prediction models for post-intensive care syndrome outcomes in adult survivors of critical illness.Methods:As of November 1,2023,Cochrane Library,PubMed,Embase,CINAHL,Web of Science,PsycInfo,China National Knowledge Infrastructure(CNKI),SinoMed,Wanfang database,and China Science and Technology Journal Database(VIP)were searched.Following the literature screening process,we extracted data encompassing participant sources,post-intensive care syndrome(PICS)outcomes,sample sizes,missing data,predictive factors,model development methodologies,and metrics for model performance and evaluation.We conducted a review and classification of the PICS domains and predictive factors identified in each study.The Prediction Model Risk of Bias Assessment Tool was employed to assess the quality and applicability of the studies.Results:This systematic review included a total of 16 studies,comprising two cognitive impairment studies,four psychological impairment studies,eight physiological impairment studies,and two studies on all three domains.The discriminative ability of prediction models measured by area under the receiver operating characteristic curve was 0.68e0.90.The predictive performance of most models was excellent,but most models were biased and overfitted.All predictive factors tend to encompass age,pre-ICU functional impairment,in-ICU experiences,and early-onset new symptoms.Conclusions:This review identified 16 prediction models and the predictive factors for PICS.Nonetheless,due to the numerous methodological and reporting shortcomings identified in the studies under review,clinicians should exercise caution when interpreting the predictions made by these models.To avert the development of PICS,it is imperative for clinicians to closely monitor prognostic factors,including the in-ICU experience and early-onset new symptoms.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder increasingly linked with hypertension,posing significant health risks.The need for a predictive model tailored for T2DM patients is evident,as current tools may not fully capture the unique risks in this population.This study hypothesizes that a nomogram incorporating specific risk factors will improve hypertension risk prediction in T2DM patients.AIM To develop and validate a nomogram prediction model for hypertension in T2DM patients.METHODS A retrospective observational study was conducted using data from 26850 T2DM patients from the Anhui Provincial Primary Medical and Health Information Management System(2022 to 2024).The study included patients aged 18 and above with available data on key variables.Exclusion criteria were type 1 diabetes,gestational diabetes,insufficient data,secondary hypertension,and abnormal liver and kidney function.The Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression were used to construct the nomogram,which was validated on separate datasets.RESULTS The developed nomogram for T2DM patients incorporated age,low-density lipoprotein,body mass index,diabetes duration,and urine protein levels as key predictive factors.In the training dataset,the model demonstrated a high discriminative power with an area under the receiver operating characteristic curve(AUC)of 0.823,indicating strong predictive accuracy.The validation dataset confirmed these findings with an AUC of 0.812.The calibration curve analysis showed excellent agreement between predicted and observed outcomes,with absolute errors of 0.017 for the training set and 0.031 for the validation set.The Hosmer-Lemeshow test yielded non-significant results for both sets(χ^(2)=7.066,P=0.562 for training;χ^(2)=6.122,P=0.709 for validation),suggesting good model fit.CONCLUSION The nomogram effectively predicts hypertension risk in T2DM patients,offering a valuable tool for personalized risk assessment and guiding targeted interventions.This model provides a significant advancement in the management of T2DM and hypertension comorbidity.
基金the support of Research Program of Fine Exploration and Surrounding Rock Classification Technology for Deep Buried Long Tunnels Driven by Horizontal Directional Drilling and Magnetotelluric Methods Based on Deep Learning under Grant E202408010the Sichuan Science and Technology Program under Grant 2024NSFSC1984 and Grant 2024NSFSC1990。
文摘Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method.
基金The National Key Research and Development Program of China under contract Nos 2024YFF0808900,2023YFF0805300,and 2020YFA0608804the Civilian Space Programme of China under contract No.D040305.
文摘The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods.
文摘This letter addressed the impactful study by Zhong et al,which introduced a risk prediction and stratification model for surgical adverse events following minimally invasive esophagectomy.By identifying key risk factors such as chronic obstructive pulmonary disease and hypoalbuminemia,the model demonstrated strong predictive accuracy and offered a pathway to personalized perioperative care.This correspondence highlighted the clinical significance,emphasizing its potential to optimize patient outcomes through tailored inter-ventions.Further prospective validation and application across diverse settings are essential to realize its full potential in advancing esophageal surgery practices.
基金Supported by the Research Fund of Qiannan Medical College for Nationalities,No.Qnyz202222.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed that CRC patients may experience postoperative cognitive dysfunction(POCD).AIM To establish a risk prediction model for POCD in CRC patients and investigate the preventive value of dexmedetomidine(DEX).METHODS A retrospective analysis was conducted on clinical data from 140 CRC patients who underwent surgery at the People’s Hospital of Qian Nan from February 2020 to May 2024.Patients were allocated into a modeling group(n=98)and a validation group(n=42)in a 7:3 ratio.General clinical data were collected.Additionally,in the modeling group,patients who received DEX preoperatively were incorporated into the observation group(n=54),while those who did not were placed in the control group(n=44).The incidence of POCD was recorded for both cohorts.Data analysis was performed using statistical product and service solutions 20.0,with t-tests orχ^(2) tests employed for group comparisons based on the data type.Least absolute shrinkage and selection operator regression was applied to identify influencing factors and reduce the impact of multicollinear predictors among variables.Multivariate analysis was carried out using Logistic regression.Based on the identified risk factors,a risk prediction model for POCD in CRC patients was developed,and the predictive value of these risk factors was evaluated.RESULTS Significant differences were observed between the cognitive dysfunction group and the non-cognitive dysfunction group in diabetes status,alcohol consumption,years of education,anesthesia duration,intraoperative blood loss,intraoperative hypoxemia,use of DEX during surgery,intraoperative use of vasoactive drugs,surgical time,systemic inflammatory response syndrome(SIRS)score(P<0.05).Multivariate Logistic regression analysis identified that diabetes[odds ratio(OR)=4.679,95%confidence interval(CI)=1.382-15.833],alcohol consumption(OR=5.058,95%CI:1.255-20.380),intraoperative hypoxemia(OR=4.697,95%CI:1.380-15.991),no use of DEX during surgery(OR=3.931,95%CI:1.383-11.175),surgery duration≥90 minutes(OR=4.894,95%CI:1.377-17.394),and a SIRS score≥3(OR=4.133,95%CI:1.323-12.907)were independent risk factors for POCD in CRC patients(P<0.05).A risk prediction model for POCD was constructed using diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score as factors.A receiver operator characteristic curve analysis of these factors revealed the model’s predictive sensitivity(88.56%),specificity(70.64%),and area under the curve(AUC)(AUC=0.852,95%CI:0.773-0.919).The model was validated using 42 CRC patients who met the inclusion criteria,demonstrating sensitivity(80.77%),specificity(81.25%),and accuracy(80.95%),and AUC(0.805)in diagnosing cognitive impairment,with a 95%CI:0.635-0.896.CONCLUSION Logistic regression analysis identified that diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score vigorously influenced the occurrence of POCD.The risk prediction model based on these factors demonstrated good predictive performance for POCD in CRC individuals.This study offers valuable insights for clinical practice and contributes to the prevention and management of POCD under CRC circumstances.