The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS...This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability.展开更多
A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article ai...A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article aimed to propose a fixed-depth suspension control for the MMS with a limited onboard energy supply.The research team established a kinematic model to analyze fluctuations in the vertical motion of the MMS and the delayed response of the system.We ascertained a direct one-to-one correlation between the displacement volume of the mobile ocean seismic instrument and the depth at which it reaches a state of neutral buoyancy(commonly referred to as the hover depth).A fixed-depth control algorithm was introduced,allowing a gradual approach to the necessary displacement volume to reach the desired suspension depth.The study optimized the boundary conditions to reduce unnecessary adjustments and mitigate the time delay caused by the instrument’s inertia,thereby significantly minimizing energy consumption.This method does not require calculating the hydrodynamic parameters or transfer functions of the MMS,thereby considerably reducing the implementation complexity.In the three-month sea trial in the South China Sea,the seismic instrument was set to hover at 800 m,with a permissible fluctuation of±100 m,operating on a seven-day cycle.The experimental results show that the seismic instrument has an average hover error of 34.6 m,with a vertical drift depth of 29.6 m per cycle,and the buoyancy adjustment system made six adjustments,indicating that our proposed control method performs satisfactorily.In addition,this method provides new insights for the fixed-depth control of other ocean observation devices that rely on buoyancy adjustment.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy...Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
In the last five years,there has been a V-shaped recovery in the number of papers on congestion control algorithms on the Internet.In this paper,congestion problems on the Internet are discussed,such as congestion col...In the last five years,there has been a V-shaped recovery in the number of papers on congestion control algorithms on the Internet.In this paper,congestion problems on the Internet are discussed,such as congestion collapse and bufferbloat from the perspective of the necessity of congestion control algorithms.The typical congestion control algorithms are introduced,and the research areas and methods of congestion control algorithms are described.Recent research trends and future prospects of congestion control algorithms are also presented.展开更多
Predictive control is an advanced control algorithm,which is widely used in industrial process control.Among them,model predictive control(MPC)is an important branch of predictive control.Its basic principle is to use...Predictive control is an advanced control algorithm,which is widely used in industrial process control.Among them,model predictive control(MPC)is an important branch of predictive control.Its basic principle is to use the system model to predict future behavior and determine the current control action by optimizing the objective function.This paper discusses the application of MPC in the prediction and control of the speed of vehicles to optimize traffic flow.It is a valuable reference for alleviating traffic congestion and improving travel efficiency and smoothness and provides scientific basis and technical support for future highway traffic management.展开更多
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli...Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin...The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.展开更多
In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the p...In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.展开更多
With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state s...With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state secret algorithm GuoMi algorithm.The original Hyperledger Fabric only supports internationally common encryption algorithms,so it is particularly necessary to enhance support for the national encryption standard.Traditional identity authentication,access control,and security audit technologies have single-point failures,and data can be easily tampered with,leading to trust issues.To address these problems,this paper proposes an optimized and application research plan for Hyperledger Fabric.We study the optimization model of cryptographic components in Hyperledger Fabric,and based on Fabric's pluggable mechanism,we enhance the Fabric architecture with the national encryption standard.In addition,we research key technologies involved in the secure application protocol based on the blockchain.We propose a blockchain-based identity authentication protocol,detailing the design of an identity authentication scheme based on blockchain certificates and Fabric CA,and use a dual-signature method to further improve its security and reliability.Then,we propose a flexible,dynamically configurable real-time access control and security audit mechanism based on blockchain,further enhancing the security of the system.展开更多
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic...The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.展开更多
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金supported by Ladoke Akintola University of Technology,Ogbomoso,Nigeria and the University of Zululand,South Africa.
文摘This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability.
基金The National Key Research and Development Program of China under contract Nos.2021YFC3101401 and 2022YFC3003802the Deep Blue Fund under contract No.SL2103+2 种基金the Zhejiang Provincial Key Research and Development Program under contract No.2021C03186the Zhejiang Provincial Natural Science Foundation of China under contract No.LDQ24D060001the Open Fund Project of Key Laboratory of Ocean Observation Technology,MNR under contract No.2024klootA11.
文摘A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article aimed to propose a fixed-depth suspension control for the MMS with a limited onboard energy supply.The research team established a kinematic model to analyze fluctuations in the vertical motion of the MMS and the delayed response of the system.We ascertained a direct one-to-one correlation between the displacement volume of the mobile ocean seismic instrument and the depth at which it reaches a state of neutral buoyancy(commonly referred to as the hover depth).A fixed-depth control algorithm was introduced,allowing a gradual approach to the necessary displacement volume to reach the desired suspension depth.The study optimized the boundary conditions to reduce unnecessary adjustments and mitigate the time delay caused by the instrument’s inertia,thereby significantly minimizing energy consumption.This method does not require calculating the hydrodynamic parameters or transfer functions of the MMS,thereby considerably reducing the implementation complexity.In the three-month sea trial in the South China Sea,the seismic instrument was set to hover at 800 m,with a permissible fluctuation of±100 m,operating on a seven-day cycle.The experimental results show that the seismic instrument has an average hover error of 34.6 m,with a vertical drift depth of 29.6 m per cycle,and the buoyancy adjustment system made six adjustments,indicating that our proposed control method performs satisfactorily.In addition,this method provides new insights for the fixed-depth control of other ocean observation devices that rely on buoyancy adjustment.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金supported in part by the National Natural Science Foundation of China under Grant 61873130in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004+4 种基金in part by the Foundation of the Key Laboratory of Industrial Internet of Things and Networked Control of the Ministry of Education of China under Grant 2021FF01in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grant NY221082,Grant NY222144,and Grant NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grantin part by the Fundamental Research Funds for the Central Universities under WUT:104972024KFYjc0072.
文摘Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金supported by JSPS Grants-in-Aid for Scientific Research JP20K11786 and JP21KK0202.
文摘In the last five years,there has been a V-shaped recovery in the number of papers on congestion control algorithms on the Internet.In this paper,congestion problems on the Internet are discussed,such as congestion collapse and bufferbloat from the perspective of the necessity of congestion control algorithms.The typical congestion control algorithms are introduced,and the research areas and methods of congestion control algorithms are described.Recent research trends and future prospects of congestion control algorithms are also presented.
文摘Predictive control is an advanced control algorithm,which is widely used in industrial process control.Among them,model predictive control(MPC)is an important branch of predictive control.Its basic principle is to use the system model to predict future behavior and determine the current control action by optimizing the objective function.This paper discusses the application of MPC in the prediction and control of the speed of vehicles to optimize traffic flow.It is a valuable reference for alleviating traffic congestion and improving travel efficiency and smoothness and provides scientific basis and technical support for future highway traffic management.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC4028in part by the National Natural Science Foundation of China under Grant 62473204+3 种基金in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grants NY221082,NY222144,and NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX24_1215.
文摘Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
基金Supported by National Natural Science Foundation of China(Grant Nos.52172383,51805081)Jiangsu Provincial Postgraduate Research&Practice Innovation Program(Grant No.KYCX22_0196)。
文摘The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.
文摘In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.
基金supported by Fujian Provincial Social Science Foundation Public Security Theory Research Project(FJ2023TWGA004)Education and Scientific Research Special Project of Fujian Provincial Department of Finance(Research on the Application of Blockchain Technology in Prison Law Enforcement Management),under National Key R&D Program of China(2020YFB1005500)。
文摘With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state secret algorithm GuoMi algorithm.The original Hyperledger Fabric only supports internationally common encryption algorithms,so it is particularly necessary to enhance support for the national encryption standard.Traditional identity authentication,access control,and security audit technologies have single-point failures,and data can be easily tampered with,leading to trust issues.To address these problems,this paper proposes an optimized and application research plan for Hyperledger Fabric.We study the optimization model of cryptographic components in Hyperledger Fabric,and based on Fabric's pluggable mechanism,we enhance the Fabric architecture with the national encryption standard.In addition,we research key technologies involved in the secure application protocol based on the blockchain.We propose a blockchain-based identity authentication protocol,detailing the design of an identity authentication scheme based on blockchain certificates and Fabric CA,and use a dual-signature method to further improve its security and reliability.Then,we propose a flexible,dynamically configurable real-time access control and security audit mechanism based on blockchain,further enhancing the security of the system.
基金funded by Ministry of Higher Education(MoHE)Malaysia,under Transdisciplinary Research Grant Scheme(TRGS/1/2019/UKM/01/4/2).
文摘The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.