期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
ArchiWeb:A web platform for AI-driven early-stage architectural design
1
作者 Yichen Mo Biao Li 《Frontiers of Architectural Research》 2025年第6期1551-1566,共16页
As society confronts increasingly complex demands and the growing need for carbon-neutral architecture,AI-driven design methodologies are evolving rapidly.However,the lack of a unified integration platform in the desi... As society confronts increasingly complex demands and the growing need for carbon-neutral architecture,AI-driven design methodologies are evolving rapidly.However,the lack of a unified integration platform in the design process continues to hinder AI’s integration into real-world workflows.To address this challenge,we introduce ArchiWeb,a web-based platform specifically built to support AI-driven processes in early-stage architectural design.ArchiWeb transforms architectural representation and problem formulation by utilizing lightweight data protocols and a modular algorithmic network within an interactive web environment.Through its cloud-native,open-architecture framework,ArchiWeb enables deeper integration of AI technologies while accelerating the accumulation,sharing,and reuse of design knowledge across projects and disciplines.Ultimately,ArchiWeb aims to drive architectural design toward greater intelligence,efficiency,and sustainability―supporting the transition to data-informed,computationally enabled,and environmentally responsible design practices. 展开更多
关键词 ai-driven platform Data protocol Digital workflow Algorithmic design Web based interactivity
原文传递
AI-driven accelerated discovery of intercalation-type cathode materials for magnesium batteries
2
作者 Wenjie Chen Zichang Lin +2 位作者 Xinxin Zhang Hao Zhou Yuegang Zhang 《Journal of Energy Chemistry》 2025年第9期40-46,I0003,共8页
Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performa... Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development. 展开更多
关键词 Magnesium-ion batteries Interpretable machine learning ai-driven workflow Material screening Intercalation cathode materials
在线阅读 下载PDF
Targeted stabilization of MYC2 protein:AI-driven resistance design conquers citrus Huanglongbing
3
作者 Ziyue Liu Yifei Li +5 位作者 Hongchen Liu Yiting Pu Jiaxin Tang Siyuan Feng Qiyang Min Kun Qian 《Advanced Agrochem》 2025年第4期307-309,共3页
This Highlight discusses the landmark study by Zhao et al.(Science,2025)that presents a transformative strategy against citrus Huanglongbing(HLB).The work identifies the E3 ubiquitin ligase PUB21 as a central suscepti... This Highlight discusses the landmark study by Zhao et al.(Science,2025)that presents a transformative strategy against citrus Huanglongbing(HLB).The work identifies the E3 ubiquitin ligase PUB21 as a central susceptibility(S)factor,degrading the defense regulator MYC2.Crucially,the study harnesses natural resistance(dominantnegative PUB21DN mutant)and pioneers AI-driven design to develop a 14-amino acid peptide(APP3-14).This peptide dually combats HLB by stabilizing MYC2(inhibiting PUB21)and directly targeting the unculturable pathogen Candidatus Liberibacter asiaticus(CLas),achieving>90%bacterial reduction in field trials.The research also exposes how a CLas effector(SDE5,Sec-delivered effector 5)hijacks the PUB21-MYC2 axis.This work establishes"defense protein stabilization"as a powerful new paradigm for breeding resistant crops and controlling recalcitrant pathogens,exemplified by the innovative integration of AI in peptide therapeutics for plants. 展开更多
关键词 Citrus Huanglongbing PUB21 APP3-14 ai-driven design Field resistance
在线阅读 下载PDF
Future Manufacturing with AI-Driven Particle Vision Analysis in the Microscopic World
4
作者 Guangyao Chen Fengqi You 《Engineering》 2025年第9期68-84,共17页
Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transformi... Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transforming the way we interpret and analyze imaging data,simplifying complex tasks and enabling innovative experimental methods previously thought impossible.In smart manufacturing,these improvements are especially impactful,increasing precision and efficiency in production processes.This review examines the convergence of AI with particle image analysis,an area we refer to as“particle vision analysis(PVA).”We offer a detailed overview of how this technology integrates into and impacts various fields within the physical sciences and materials sectors,where it plays a crucial role in both innovation and operational improvements.We explore four key areas of advancement-namely,particle classification,detection,segmentation,and object tracking-along with a look into the emerging field of augmented microscopy.This paper also underscores the vital role of the existing datasets and implementations that support these applications,which provide essential insights and resources that drive continuous research and development in this fast-evolving field.Our thorough analysis aims to outline the transformative potential of AI-driven PVA in improving precision in future manufacturing at the microscopic scale and thereby preparing the ground for significant technological progress and broad industrial applications in nanomanufacturing,biomanufacturing,and pharmaceutical manufacturing.This exploration not only highlights the advantages of integrating AI into conventional manufacturing processes but also anticipates the rise of next-generation smart manufacturing,which is set to revolutionize industry standards and operational practices. 展开更多
关键词 Particle vision analysis ai-driven microscopic imaging Smart manufacturing
在线阅读 下载PDF
A Review of AI-Driven Automation Technologies:Latest Taxonomies,Existing Challenges,and Future Prospects
5
作者 Weiqiang Jin Ningwei Wang +3 位作者 Lei Zhang Xingwu Tian Bohang Shi Biao Zhao 《Computers, Materials & Continua》 2025年第9期3961-4018,共58页
With the growing adoption of Artifical Intelligence(AI),AI-driven autonomous techniques and automation systems have seen widespread applications,become pivotal in enhancing operational efficiency and task automation a... With the growing adoption of Artifical Intelligence(AI),AI-driven autonomous techniques and automation systems have seen widespread applications,become pivotal in enhancing operational efficiency and task automation across various aspects of human living.Over the past decade,AI-driven automation has advanced from simple rule-based systems to sophisticated multi-agent hybrid architectures.These technologies not only increase productivity but also enable more scalable and adaptable solutions,proving particularly beneficial in industries such as healthcare,finance,and customer service.However,the absence of a unified review for categorization,benchmarking,and ethical risk assessment hinders the AI-driven automation progress.To bridge this gap,in this survey,we present a comprehensive taxonomy of AI-driven automation methods and analyze recent advancements.We present a comparative analysis of performance metrics between production environments and industrial applications,along with an examination of cutting-edge developments.Specifically,we present a comparative analysis of the performance across various aspects in different industries,offering valuable insights for researchers to select the most suitable approaches for specific applications.Additionally,we also review multiple existing mainstream AI-driven automation applications in detail,highlighting their strengths and limitations.Finally,we outline open research challenges and suggest future directions to address the challenges of AI adoption while maximizing its potential in real-world AI-driven automation applications. 展开更多
关键词 ai-driven automation techniques and systems artificial general intelligence(AGI) LLMs robotic process automation(RPA)
在线阅读 下载PDF
AI-Driven Sentiment Analysis:Understanding Customer Feedbacks onWomen’s Clothing through CNN and LSTM
6
作者 Phan-Anh-Huy Nguyen Luu-Luyen 《Intelligent Automation & Soft Computing》 2025年第1期221-234,共14页
Theburgeoning e-commerce industry hasmade online customer reviews a crucial source of feedback for businesses.Sentiment analysis,a technique used to extract subjective information from text,has become essential for un... Theburgeoning e-commerce industry hasmade online customer reviews a crucial source of feedback for businesses.Sentiment analysis,a technique used to extract subjective information from text,has become essential for understanding consumer sentiment and preferences.However,traditional sentiment analysis methods often struggle with the nuances and context of natural language.To address these issues,this study proposes a comparison of deep learningmodels that figure out the optimalmethod to accurately analyze consumer reviews onwomen’s clothing.CNNs excel at capturing local features and semantic information,while LSTMs are adept at handling long-range dependencies and contextual understanding.By integrating these two deep learning techniques,our model aims to achieve better performance in sentiment classification.The models were trained and evaluated on a dataset of women’s clothing reviews sourced from Kaggle.The dataset was pre-processed to clean and tokenize the text data,and word embeddings were used to represent words as numerical vectors.The CNN component of the model extracts local features from the text,while the LSTM component captures long-range dependencies and contextual information.The outputs of the CNN and LSTM layers are then concatenated and fed into a fully connected layer for final sentiment classification.Experimental results demonstrate that the hybrid model outperforms traditional machine learning techniques and other deep learning models in terms of accuracy,precision,recall,and F1-score.By accurately classifying sentiment,identifying key themes,and predicting future trends,our model can provide valuable insights to businesses in the apparel industry.These insights can be used to improve product design,marketing strategies,and customer service,ultimately leading to increased customer satisfaction and business success. 展开更多
关键词 ai-driven sentiment analysis RNN LSTM CNN deep learning e-commerce
在线阅读 下载PDF
Leveraging Natural Language Processing(NLP)and machine learning in task-based language teaching:enhancing Chinese language acquisition with AI-driven feedback systems
7
作者 Yutuzayi Aini Shanxi Lan Nianqi Wei 《Journal of Education and Educational Policy Studies》 2025年第2期46-50,共5页
This study explores the innovative application of intelligent technology in the task-based Chinese teaching method,focusing on the effectiveness of real-time guidance of speech recognition and intelligent analysis tec... This study explores the innovative application of intelligent technology in the task-based Chinese teaching method,focusing on the effectiveness of real-time guidance of speech recognition and intelligent analysis technology on learners'pronunciation,grammar,and vocabulary.In the experiment,100 Chinese second language learners were divided into intelligent assistant groups and traditional teaching groups for comparative observation.According to the data,the task completion efficiency of the intelligent group increased by 20%,and the language proficiency evaluation index increased by an average of 30%.More than 80%of learners reported that the instant feedback mechanism effectively improved their confidence and participation in learning.The research proves that intelligent technology can build dynamic learning paths and optimize language acquisition efficiency through personalized training modules.Although the system has technical bottlenecks in the dimension of understanding cultural context,the experimental results provide empirical support for the deep integration of intelligent technology and language teaching,and lay the technical foundation for further research and development of a culturally sensitive intelligent teaching system. 展开更多
关键词 natural language processing machine learning task-based language teaching Chinese language acquisition ai-driven feedback
在线阅读 下载PDF
迈向智能原生:智能原生企业分级评估框架和战略重点
8
作者 尹西明 张济涵 +1 位作者 金珺 陈泰伦 《创新科技》 2026年第1期66-75,共10页
在“人工智能+”上升为国家战略的背景下,企业智能化正从工具辅助迈向原生重构,催生“智能原生企业”这一全新组织形态。智能原生企业并非简单地应用人工智能(AI)技术,而是将人工智能深度融入组织架构、业务运营与价值逻辑,实现从“+AI... 在“人工智能+”上升为国家战略的背景下,企业智能化正从工具辅助迈向原生重构,催生“智能原生企业”这一全新组织形态。智能原生企业并非简单地应用人工智能(AI)技术,而是将人工智能深度融入组织架构、业务运营与价值逻辑,实现从“+AI”到“AI×”的根本性范式跃迁。基于技术创新(T)、组织管理(O)与场景开发(C)三位一体的视角,构建智能原生企业成熟度评估框架和飞轮模式,探讨从L0(传统企业)到L4(完全智能原生企业)等5个阶段的智能成熟度,并揭示各阶段的核心特征。创新者应摒弃“为AI而AI”的误区,坚持“场景驱动、系统重构、人机共生”的价值共创思维,以智能为基,以组织为要,以场景为锚,构建“技术—组织—场景”三位一体的智能原生飞轮,实现“AI×”的指数型增长,助力乃至引领智能经济发展和智能社会建设。 展开更多
关键词 智能原生企业 场景驱动创新 人机共生 新质生产力 TOC框架
在线阅读 下载PDF
AI赋能的课程质量评估与闭环改进机制研究
9
作者 苏颖娜 王志超 +1 位作者 董宁 周磊 《计算机应用文摘》 2026年第2期13-15,共3页
针对高校课程评价长期存在的维度单一、反馈迟滞、改进滞后等问题,文章提出一种基于AI技术的课程质量评估与闭环改进机制。通过构建覆盖多维度、全过程的课程评价体系,综合应用机器学习与自然语言处理技术对教学过程数据进行深度挖掘和... 针对高校课程评价长期存在的维度单一、反馈迟滞、改进滞后等问题,文章提出一种基于AI技术的课程质量评估与闭环改进机制。通过构建覆盖多维度、全过程的课程评价体系,综合应用机器学习与自然语言处理技术对教学过程数据进行深度挖掘和分析,从而形成“评价—诊断—反馈—改进”的完整数据闭环。研究表明,该机制能够显著提升课程质量评估的客观性与科学性,实现精准化、动态化的教学改进支持,从而有效增强教学管理效能,达成“以评促教、以评促学”的目标。 展开更多
关键词 课程质量评价 AI 闭环改进 数据驱动 教学改进
在线阅读 下载PDF
数智时代图书馆数据管理体系优化路径研究
10
作者 邓玉祥 《图书馆研究与工作》 2026年第1期23-28,共6页
随着生成式人工智能、联邦学习等技术的突破性发展,图书馆数据管理正经历从“数据存储”向“智能知识创造”的范式跃迁。面对国家政策法规对数据安全、隐私保护提出的更高要求,以及海量数据带来的创新机遇与风险考验,文章提出了一种基... 随着生成式人工智能、联邦学习等技术的突破性发展,图书馆数据管理正经历从“数据存储”向“智能知识创造”的范式跃迁。面对国家政策法规对数据安全、隐私保护提出的更高要求,以及海量数据带来的创新机遇与风险考验,文章提出了一种基于“感知—认知—决策—服务”四层智能架构的图书馆数据管理体系。该架构通过整合人工智能与大数据技术,构建高效、灵活且智能化的数据处理平台,并提出构建图书馆智能数据管理总体架构、建立基于生成式人工智能的智能资源组织与知识发现机制、实施智能用户画像与个性化服务策略,以及探索数据驱动的决策支持与运营管理优化路径等策略。 展开更多
关键词 数智时代 AI驱动数据管理 智能架构 生成式人工智能
在线阅读 下载PDF
AI-driven software engineering
11
作者 Josh Mahmood Ali 《Advances in Engineering Innovation》 2023年第3期17-21,共5页
The intersection of artificial intelligence(AI)and software engineering marks a transformative phase in the technology industry.This paper delves into AI-driven software engineering,exploring its methodologies,implica... The intersection of artificial intelligence(AI)and software engineering marks a transformative phase in the technology industry.This paper delves into AI-driven software engineering,exploring its methodologies,implications,challenges,and benefits.Drawing from data sources such as GitHub and Bitbucket and insights from industry experts,the study offers a comprehensive view of the current landscape.While the results indicate a promising uptrend in the integration of AI techniques in software development,challenges like model interpretability,ethical concerns,and integration complexities emerge as significant.Nevertheless,the transformative potential of AI within software engineering is profound,ushering in new paradigms of efficiency,innovation,and user experience.The study concludes by emphasizing the need for further research,better tooling,ethical guidelines,and education to fully harness the potential of AI-driven software engineering. 展开更多
关键词 ai-driven development software engineering model interpretability ethical AI integration software innovation
在线阅读 下载PDF
AI驱动的高校图书馆战略情报服务平台建设及案例研究 被引量:1
12
作者 吴爱芝 周子茗 +3 位作者 罗文馨 刘姝 张春红 陈金莉 《图书馆》 2025年第6期83-90,共8页
高校图书馆如何精准满足高校发展战略需求并提供高价值的战略情报服务是当前亟待解决的问题。利用自然语言处理、知识图谱和大模型技术从多元信息源获取高校学科、产业、行业等领域的情报内容,基于人工智能技术与算法建立AI驱动的战略... 高校图书馆如何精准满足高校发展战略需求并提供高价值的战略情报服务是当前亟待解决的问题。利用自然语言处理、知识图谱和大模型技术从多元信息源获取高校学科、产业、行业等领域的情报内容,基于人工智能技术与算法建立AI驱动的战略情报服务平台,对科研情报数据进行深入挖掘与分析,是在当前技术和学术生态环境下高校图书馆开展智能型战略情报服务的有效途径。文章以北京大学图书馆构建的AI驱动型战略情报服务平台为案例,梳理平台建设的关键技术、流程与成效等,提出高校图书馆战略情报服务平台具有巨大的推广潜力和重要的示范价值,是深入开展高校图书馆学科与研究支持服务、决策与智库服务、数据与知识服务等的重要抓手之一。 展开更多
关键词 AI驱动 高校图书馆 战略情报服务 服务平台 大模型
在线阅读 下载PDF
基于AI驱动的边坡地质灾害智能识别与巡检养护研究进展 被引量:3
13
作者 胡盛明 汪舟 +3 位作者 卢永飞 马贵平 毛志斌 王清华 《南昌工程学院学报》 2025年第1期37-47,共11页
为有效应对边坡地质灾害带来的严峻挑战,如何借助先进技术提升边坡地质灾害的监测与防治水平成为关键。回顾了人工智能(AI)技术在边坡地质灾害智能识别与巡检养护领域的最新研究进展;系统梳理了传统人工巡检方法的效率低下和安全隐患问... 为有效应对边坡地质灾害带来的严峻挑战,如何借助先进技术提升边坡地质灾害的监测与防治水平成为关键。回顾了人工智能(AI)技术在边坡地质灾害智能识别与巡检养护领域的最新研究进展;系统梳理了传统人工巡检方法的效率低下和安全隐患问题。综述了新型监测技术,如无人机、遥感和深度学习技术在提高边坡监测准确性和效率方面的发展;展望了未来研究方向,主要包括技术融合、自动化、实时监测与预警能力提升,以及数据驱动的决策支持等。同时,分析探讨了技术进步过程中面临的挑战,包括数据质量、算法过拟合和计算资源等问题,并强调建立边坡地质灾害数据库和分类标准的重要性,以实现快速识别和应对边坡地质灾害,降低社会经济损失和人员伤亡风险。研究结果可为构建更加完善和高效的地质灾害防控体系提供有益参考。 展开更多
关键词 AI驱动 公路边坡 地质灾害 智能识别 巡检养护
在线阅读 下载PDF
分析化学智慧课程建设与精准教学探索
14
作者 吴硕 杨成 +5 位作者 董校 郭慧敏 宋波 丁保君 王秀云 潘玉珍 《大学化学》 2025年第11期76-82,共7页
针对分析化学课程授课过程中存在的学生基础差异大、学科发展快,课程知识点杂、多、散、难度大,学生不易掌握等问题,课程系统建设了“应用化学专业谱图”、“分析化学智慧课程”和“智能学伴”三大平台,并依托平台,立足化学基础学科拔... 针对分析化学课程授课过程中存在的学生基础差异大、学科发展快,课程知识点杂、多、散、难度大,学生不易掌握等问题,课程系统建设了“应用化学专业谱图”、“分析化学智慧课程”和“智能学伴”三大平台,并依托平台,立足化学基础学科拔尖创新人才培养目标,面向应用化学强基班和拔尖班学生尝试了品德为先、能力为要、数据驱动的精准教学探索实践,对教学模式、教学内容、教学流程和考核模式进行了全流程、全要素改革,取得了初步成效。 展开更多
关键词 分析化学课程 精准教学 智慧课程 知识谱图
在线阅读 下载PDF
AI驱动的智慧校园安全预警系统设计与应用
15
作者 周巍 《信息与电脑》 2025年第22期131-133,共3页
伴随信息技术的飞速发展与人工智能(Artificial Intelligence,AI)技术的广泛应用,智慧校园建设已成为教育现代化的重要方向。文章旨在探讨AI驱动的智慧校园安全预警系统的设计与应用,该系统集成先进的数据采集、传输、处理及预警决策技... 伴随信息技术的飞速发展与人工智能(Artificial Intelligence,AI)技术的广泛应用,智慧校园建设已成为教育现代化的重要方向。文章旨在探讨AI驱动的智慧校园安全预警系统的设计与应用,该系统集成先进的数据采集、传输、处理及预警决策技术,构建全面、高效、智能的校园安全管理体系。通过对校园内各类安全数据的实时监测与分析,可提高校园的安全管理水平,保障师生的生命财产安全。 展开更多
关键词 AI驱动 智慧校园 安全预警系统 数据采集 数据处理
在线阅读 下载PDF
Between social and sustainable:A collaborative wood upcycling design process integrating AI and mixed reality tools
16
作者 Boyuan Yu Jianing Luo +6 位作者 Kiwook Rha Balsam Al-Hadithi Zhiyong Li Seohyeon Kim Zijun Zhao Yue Lu Provides Ng 《Frontiers of Architectural Research》 2025年第6期1681-1696,共16页
The nature-culture divide,a longstanding conceptual separation between human beings and the natural environment,is increasingly challenged by the pressing need to address climate change.This urgency calls for design a... The nature-culture divide,a longstanding conceptual separation between human beings and the natural environment,is increasingly challenged by the pressing need to address climate change.This urgency calls for design approaches that can synthesise social and sustainable aspects,creating environmental-user-centric solutions.Our study aimed to bridge this divide by exploring the integration of digital and human crafts,with a focus on wood upcycling furniture as a case study.It investigates the flow of design information,creating an interactive feedback loop between physical and digital domains.To ensure the workflow aligns with stakeholder needs,the study engages professionals interdisciplinarily,including designers,informaticists,and engineers,to collectively test and reflect on the process.The proposed pipeline was then compared with the collaborative pipeline that emerged,incorporating stakeholder perspective to refine the system design.The resulting workflow embraced 3D scanning,AIdriven design generation,VR user scenario simulation,and AR-assisted physical fabrication.The digital and physical furniture prototypes suggest new avenues for design informatics by synthesising objective mathematical decisions with subjective semiotic inputs.By exploring the integration of human and machine crafts in the co-creation process,the reflections contribute to sustainable urban and community construction(SDG 11),revealing potentials for scalability in architectural production. 展开更多
关键词 Off-cut wood Upcycling FURNITURE ai-driven design Mixed-reality Participatory design
原文传递
AI4City:人工智能赋能城市的理论框架 被引量:1
17
作者 吴志强 《国际大都市发展研究(中英文)》 2025年第2期5-19,共15页
系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等... 系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等核心要素,全面赋能城市生产、生活和生态,推动城市向自组织、可学习、可迭代的高度智能化方向发展。与传统智慧城市及人工智能城市相比,AI4City强调技术伦理与社会责任,确保人工智能的发展符合人类价值观,为城市可持续发展提供新思路。 展开更多
关键词 AI4City 人工智能城市 智慧城市 需求驱动创新 智能治理
在线阅读 下载PDF
Smart Ecotourism and Natural Ecology in Kazakhstan
18
作者 Alexey Mikhaylov Sergey Barykin +9 位作者 Daria Dinets Vasilii Buniak Oksana Kompaniitseva Anton Kucher Ekaterina Shevchuk Oksana Kompaniitseva N.B.A.Yousif Tomonobu Senjyu Valery Abramov Naqib Ullah Khan 《Research in Ecology》 2025年第3期89-103,共15页
Artificial intelligence(AI)is transforming the tourism industry and affecting on natural ecology,making it more environmentally friendly,efficient and personalized.In 2025,AI technologies are being actively implemente... Artificial intelligence(AI)is transforming the tourism industry and affecting on natural ecology,making it more environmentally friendly,efficient and personalized.In 2025,AI technologies are being actively implemented to reduce the carbon footprint,optimize resources,and improve the travel experience.Here are the key applications of AI in environmentally sustainable smart tourism:AI in smart tourism is not just a technological trend,but a necessity for the sustainable development of the industry.Paper analyses personalized and green travel experience and smart tourism.AI-based applications(Google ARCore)allow tourists to get information about attractions without paper booklets.Virtual tours reduce the need for physical travel by reducing the carbon footprint.Platforms offer routes with minimal impact on nature(for example,hiking trails instead of car tours).Tourists can offset their carbon footprint through AI tools by financing tree planting.The introduction of AI solutions allows combining economic benefits with environmental responsibility,creating a future where travel becomes safer for the planet.Paper confirms idea about sustainable tourism development in developing countries and focus on premium ecotourism.Instead of mass tourism,AI helps promote unique destinations(safaris,diving,ethnographic tours),which increases income with less environmental damage.Smart cities with AI-driven transport and energy-saving solutions make tourism more sustainable. 展开更多
关键词 AI-Based Applications Virtual Tours Low-Impact Routes Carbon Footprint Offset ai-driven Transport Energy-Saving Solutions Deep Seek
在线阅读 下载PDF
Design of Campus IT Operation and Maintenance System Combining Artificial Intelligence and Internet of Things
19
作者 Hanpu Yu 《信息工程期刊(中英文版)》 2025年第2期11-20,共10页
The integration of Artificial Intelligence (AI) and Internet of Things (IoT), known as AIoT, presents a transformative framework for modernizing campus IT operation and maintenance. This paper details the design of a ... The integration of Artificial Intelligence (AI) and Internet of Things (IoT), known as AIoT, presents a transformative framework for modernizing campus IT operation and maintenance. This paper details the design of a hierarchical AIoT architecture that leverages edge computing for real-time decision-making and cloud analytics for long-term optimization, achieving a higher system availability while reducing data transmission costs. The proposed system addresses critical challenges in traditional campus management such as energy inefficiency, reactive maintenance, and resource underutilization through intelligent applications like predictive resource allocation and environmental control. Furthermore, the design incorporates a robust, AI-driven cybersecurity framework and intelligent data processing paradigms, such as federated learning, which enhance maintenance efficiency and reduce false alarms. The transition to an AIoT-enabled campus is not merely a technological upgrade but a strategic shift towards a predictive, efficient, and sustainable operational model, fundamentally enhancing the management of university infrastructures. 展开更多
关键词 Artificial Intelligence Internet of Things(IoT) ai-driven Information Technology CYBERSECURITY
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部