期刊文献+
共找到35,866篇文章
< 1 2 250 >
每页显示 20 50 100
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
1
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 multi-model ai Deep Learning Natural Language Processing (NLP) Explainable ai (XI) Federated Learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
MMCSD:Multi-Modal Knowledge Graph Completion Based on Super-Resolution and Detailed Description Generation
2
作者 Huansha Wang Ruiyang Huang +2 位作者 Qinrang Liu Shaomei Li Jianpeng Zhang 《Computers, Materials & Continua》 2025年第4期761-783,共23页
Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and ... Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance. 展开更多
关键词 multi-modal knowledge graph knowledge graph completion multi-modal fusion
在线阅读 下载PDF
Multi-modal intelligent situation awareness in real-time air traffic control: Control intent understanding and flight trajectory prediction
3
作者 Dongyue GUO Jianwei ZHANG +1 位作者 Bo YANG Yi LIN 《Chinese Journal of Aeronautics》 2025年第6期41-57,共17页
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig... With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment. 展开更多
关键词 airtraffic control Automatic speechrecognition and understanding Flight trajectory prediction multi-modAL Situationawareness
原文传递
MMGC-Net: Deep neural network for classification of mineral grains using multi-modal polarization images
4
作者 Jun Shu Xiaohai He +3 位作者 Qizhi Teng Pengcheng Yan Haibo He Honggang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3894-3909,共16页
The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring ef... The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models. 展开更多
关键词 Mineral particles multi-modal image classification Shared parameters Feature fusion Spatiotemporal feature
暂未订购
Strength through unity:Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer
5
作者 Ze Wang Hao Liang +7 位作者 Annan Liu Xingchen Li Lin Guan Lei Li Liang He Andrew K.Whittaker Bai Yang Quan Lin 《Chinese Chemical Letters》 2025年第2期261-268,共8页
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov... Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers. 展开更多
关键词 aiE Prostate cancer ALP responsive Enhanced multi-mode imaging Enhanced photothermal therapy
原文传递
以AI为技术支持强化任务驱动设计
6
作者 童传荣 《小学科学》 2026年第3期25-27,共3页
小学阶段的信息科技教学注重工具性和应用性,因此,在进行信息科技教学设计时,应适当强化任务驱动设计,以AI为技术支持,以任务为驱动,引导学生带着学习任务和目标参与信息科技课堂学习。本文系统分析了AI赋能小学信息科技任务驱动的教学... 小学阶段的信息科技教学注重工具性和应用性,因此,在进行信息科技教学设计时,应适当强化任务驱动设计,以AI为技术支持,以任务为驱动,引导学生带着学习任务和目标参与信息科技课堂学习。本文系统分析了AI赋能小学信息科技任务驱动的教学价值,在此基础上,以AI赋能小学信息科技任务驱动,发挥AI的优势,为学生搭建智能学习平台,辅助学生进行任务探究,构建AI赋能的小学信息科技任务驱动高效课堂,以期为信息科技教师创新教学模式提供参考。 展开更多
关键词 信息科技 任务驱动 ai技术
在线阅读 下载PDF
AI Agents in Finance and Fintech: A Scientific Review of Agent-Based Systems, Applications, and Future Horizons
7
作者 Maryan Rizinski Dimitar Trajanov 《Computers, Materials & Continua》 2026年第1期173-206,共34页
Artificial intelligence(AI)is reshaping financial systems and services,as intelligent AI agents increasingly form the foundation of autonomous,goal-driven systems capable of reasoning,learning,and action.This review s... Artificial intelligence(AI)is reshaping financial systems and services,as intelligent AI agents increasingly form the foundation of autonomous,goal-driven systems capable of reasoning,learning,and action.This review synthesizes recent research and developments in the application of AI agents across core financial domains.Specifically,it covers the deployment of agent-based AI in algorithmic trading,fraud detection,credit risk assessment,roboadvisory,and regulatory compliance(RegTech).The review focuses on advanced agent-based methodologies,including reinforcement learning,multi-agent systems,and autonomous decision-making frameworks,particularly those leveraging large language models(LLMs),contrasting these with traditional AI or purely statistical models.Our primary goals are to consolidate current knowledge,identify significant trends and architectural approaches,review the practical efficiency and impact of current applications,and delineate key challenges and promising future research directions.The increasing sophistication of AI agents offers unprecedented opportunities for innovation in finance,yet presents complex technical,ethical,and regulatory challenges that demand careful consideration and proactive strategies.This review aims to provide a comprehensive understanding of this rapidly evolving landscape,highlighting the role of agent-based AI in the ongoing transformation of the financial industry,and is intended to serve financial institutions,regulators,investors,analysts,researchers,and other key stakeholders in the financial ecosystem. 展开更多
关键词 Artificial intelligence ai agents agentic architectures FINANCE fintech financial services
在线阅读 下载PDF
教师AI教学能力发展路径
8
作者 蔡少琪 《小学科学》 2026年第4期22-24,共3页
随着人工智能(AI)技术在教育领域的深度渗透,小学科学教师亟须提升AI教学能力以适应教育变革。本文基于教科版科学教材,结合一线教学实践经验,提出小学科学教师AI教学能力发展的阶段性路径,包括“认知与基础技能储备”“课堂实践与工具... 随着人工智能(AI)技术在教育领域的深度渗透,小学科学教师亟须提升AI教学能力以适应教育变革。本文基于教科版科学教材,结合一线教学实践经验,提出小学科学教师AI教学能力发展的阶段性路径,包括“认知与基础技能储备”“课堂实践与工具应用”“创新融合与素养提升”三个阶段,并以真实教学案例为支撑,探讨教师如何通过技术赋能实现科学教学提质增效,为教师专业成长提供参考。 展开更多
关键词 小学科学 ai教学能力 技术融合 学科创新
在线阅读 下载PDF
“AI+”跨学科融合视角下培养学生创新思维
9
作者 余海凡 《小学科学》 2026年第2期118-120,共3页
随着教育教学改革的不断深化,跨学科的教育教学方式应运而生,它可以更好地契合学生个人核心素养培养的需求,在分析问题和解决问题的过程中发展学生创新思维。在当前信息技术快速发展的背景下,教育教学领域的AI智能技术应用越来越广泛,... 随着教育教学改革的不断深化,跨学科的教育教学方式应运而生,它可以更好地契合学生个人核心素养培养的需求,在分析问题和解决问题的过程中发展学生创新思维。在当前信息技术快速发展的背景下,教育教学领域的AI智能技术应用越来越广泛,将跨学科教学过程与AI技术融合也成为当下教育教学发展的必然方向。基于此,本文分析了小学科学跨学科融合教学对学生创新思维培养的意义,并总结了数字化背景下“AI+”跨学科融合的小学科学课堂教学策略,以丰富跨学科教学形式和内容,发展学生的跨学科思维和创新思维,提高课堂教学的实效性。 展开更多
关键词 小学科学 ai技术 跨学科融合 创新思维
在线阅读 下载PDF
Graph-Based Intrusion Detection with Explainable Edge Classification Learning
10
作者 Jaeho Shin Jaekwang Kim 《Computers, Materials & Continua》 2026年第1期610-635,共26页
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ... Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field. 展开更多
关键词 Intrusion detection graph neural network explainable ai network attacks GraphSAGE
在线阅读 下载PDF
Advanced Design for High-Performance and AI Chips
11
作者 Ying Cao Yuejiao Chen +2 位作者 Xi Fan Hong Fu Bingang Xu 《Nano-Micro Letters》 2026年第1期306-336,共31页
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ... Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward. 展开更多
关键词 Artificial intelligence Advanced chips ai chips Design tactics Review and perspective
在线阅读 下载PDF
基于C-A-C的生成式AI用户间歇性中辍行为研究 被引量:8
12
作者 周涛 张春雷 邓胜利 《现代情报》 北大核心 2025年第3期40-50,64,共12页
[目的/意义]用户的间歇性中辍作为一种消极行为,将影响生成式AI的用户保持及获取持续竞争优势。因此,有必要研究用户间歇性中辍的形成机理,发现显著的影响因素。[方法/过程]基于认知—情感—意愿(Cognition-Affect-Conation,C-A-C),从... [目的/意义]用户的间歇性中辍作为一种消极行为,将影响生成式AI的用户保持及获取持续竞争优势。因此,有必要研究用户间歇性中辍的形成机理,发现显著的影响因素。[方法/过程]基于认知—情感—意愿(Cognition-Affect-Conation,C-A-C),从“使能”与“抑制”双重视角研究了生成式AI用户间歇性中辍行为。使能因素包括隐私担忧、信息幻觉、认知失调;抑制因素包括智能化、拟人化、个性化、情感承诺。采用结构方程模型(Structural Equation Modeling,SEM)和模糊集定性比较分析(fuzzy-set Qualitative Comparative Analysis,fsQCA)进行数据分析。[结果/结论]隐私担忧和信息幻觉影响认知失调,进而导致间歇性中辍行为。智能化、拟人化、个性化影响情感承诺,进而对间歇性中辍产生抑制作用。研究结果显示,生成式AI一方面需要缓解用户的隐私担忧,减少信息幻觉,从而降低用户认知失调;另一方面,需要通过提高系统的智能化、拟人化、个性化等功能水平,增进用户情感承诺,从而抑制其间歇性中辍行为。 展开更多
关键词 生成式ai 间歇性中辍 C-A-C 认知失调 情感承诺
在线阅读 下载PDF
数智化时代生成式AI助力材料专业实验课程探索研究 被引量:4
13
作者 佘砚 庄启昕 +3 位作者 张浩然 左沛元 顾金楼 滕鑫 《高分子通报》 北大核心 2025年第6期958-966,共9页
在数智化时代,生成式人工智能(generative AI,简称“生成式AI”)技术凭借其在数据分析和智能反馈等领域的优势,为高校实验课程的建设带来了全新的视角和解决方案。本文以华东理工大学开发的高分子化学实验AI助手为例,探索了基于大语言... 在数智化时代,生成式人工智能(generative AI,简称“生成式AI”)技术凭借其在数据分析和智能反馈等领域的优势,为高校实验课程的建设带来了全新的视角和解决方案。本文以华东理工大学开发的高分子化学实验AI助手为例,探索了基于大语言模型和检索增强生成技术的智能教学解决方案,该AI助手为实验教学创设因材施教的教学新模式、打造沉浸式学习新形态,并推动了智能化教学管理新变革,有效解决了传统实验教学中资源受限、指导不足等难题。通过实验教学效果评价,“使用AI助手组”的学生绝大多数认为AI助手能显著提升学生的理论知识掌握和实验操作能力,教学模式效果良好,验证了生成式AI助力材料专业实验课程的可行性与优势,为推动高等教育数智化转型提供了创新范例,也为生成式AI推广应用到更多课程教学提供了有益参考。 展开更多
关键词 数智化 生成式ai 助力 实验课程
原文传递
我国高校图书馆AI素养教育现状与提升策略——基于对19家研究型大学图书馆的调查 被引量:7
14
作者 陈芳璇 《图书馆工作与研究》 北大核心 2025年第3期75-86,共12页
文章采用网络调查法,选取我国19家研究型大学图书馆为调查对象,从教育内容、教育形式、教育团队和校内外合作4个维度分析其AI素养教育现状,揭示高校图书馆AI素养教育面临的挑战并深入分析问题根源,提出高校图书馆AI素养教育优化策略,即... 文章采用网络调查法,选取我国19家研究型大学图书馆为调查对象,从教育内容、教育形式、教育团队和校内外合作4个维度分析其AI素养教育现状,揭示高校图书馆AI素养教育面临的挑战并深入分析问题根源,提出高校图书馆AI素养教育优化策略,即树立图书馆AI素养教育理念,构建系统化AI素养教育课程体系,打造专业化AI素养教育团队,拓宽AI素养教育渠道,培养负责任的AI使用者。 展开更多
关键词 高校图书馆 ai素养 ai素养教育 研究型大学
原文传递
技术过程论视角下AI幻觉生成的价值负荷与伦理问题探析 被引量:26
15
作者 胡泳 王昱昊 《南京社会科学》 北大核心 2025年第3期84-94,共11页
AI技术的普及与产业生态的完善在引发智能社会变革的同时,也使得AI幻觉成为社会技术治理过程中新的风险变量。当AI作出不符合其训练数据的自信反应或编造与现实无关的事实时,“幻觉”便会产生。技术过程论主张将技术形态视作一个“动态... AI技术的普及与产业生态的完善在引发智能社会变革的同时,也使得AI幻觉成为社会技术治理过程中新的风险变量。当AI作出不符合其训练数据的自信反应或编造与现实无关的事实时,“幻觉”便会产生。技术过程论主张将技术形态视作一个“动态”的演变过程,可借助技术构思、技术发明与技术产业化三阶段的演化过程框架,分析AI幻觉生成的价值负荷问题。研究发现,随着技术形态的演进,逐步形成了以技术发明者、技术本体、用户个体以及企业组织等多元行动者共同组成的综合性价值负荷过程,而技术本体的自我价值负荷行为也在不断褫夺人的主体性,进而引发网络信息秩序、知识内容生产等方面的价值异化现象。伴随着对AI幻觉价值评判标准的日趋复杂化,我们亟需关注AI幻觉所衍生出的技术伦理问题,秉持怀疑的态度来审慎地开展技术实践,从而在人与技术价值共赋的动态过程中牢牢把握人的主体性价值。 展开更多
关键词 技术过程论 ai幻觉 多元价值负荷 主体性
原文传递
AI自动化对认知重塑的双刃剑效应研究 被引量:3
16
作者 李浩 郭春红 宋芳柏 《管理学报》 北大核心 2025年第2期345-354,共10页
基于技术威胁规避理论,探究AI自动化影响员工认知重塑的内在机制和边界条件,并构建有调节的中介模型,开展两项独立研究对提出的理论假设进行检验。实验研究的结果表明:AI自动化对AI知觉具有正向影响,AI知觉对认知重塑存在着倒U形影响。... 基于技术威胁规避理论,探究AI自动化影响员工认知重塑的内在机制和边界条件,并构建有调节的中介模型,开展两项独立研究对提出的理论假设进行检验。实验研究的结果表明:AI自动化对AI知觉具有正向影响,AI知觉对认知重塑存在着倒U形影响。问卷研究发现:AI知觉在AI自动化与认知重塑间发挥非线性中介作用,AI可解释性在AI自动化与AI知觉间起到负向调节作用;而AI任务复杂性可以正向调节AI自动化与AI知觉的关系,AI可解释性和AI任务复杂性还可以调节AI自动化通过AI知觉对认知重塑的倒U形影响。 展开更多
关键词 ai自动化 ai知觉 认知重塑 ai可解释性 ai任务复杂性
在线阅读 下载PDF
AI赋能工科专业实践教学管理的探索 被引量:1
17
作者 李擎 崔家瑞 +1 位作者 杨旭 冯涛 《高等工程教育研究》 北大核心 2025年第3期54-60,共7页
在深入实施国家教育数字化战略背景下,基于工程教育专业认证理念,探索了AI赋能工科专业实践教学管理的新模式。首先,构建了AI赋能实践教学管理的功能框架,具体包括课前、课中、课后3阶段18个环节。其次,基于Moodle开发环境、AI通用工具... 在深入实施国家教育数字化战略背景下,基于工程教育专业认证理念,探索了AI赋能工科专业实践教学管理的新模式。首先,构建了AI赋能实践教学管理的功能框架,具体包括课前、课中、课后3阶段18个环节。其次,基于Moodle开发环境、AI通用工具和自研专用算法,搭建了AI赋能的实践教学管理平台,负责完成经AI赋能的18个实践教学管理任务。最后,创建了AI赋能实践教学管理成效的全方位一体化评价体系,并开展了相应的持续改进。经过近8年的探索与应用,AI赋能后的实践教学管理平台大大提升了学生的学习效率,降低了教师的指导强度,促进了课程教学目标的有效达成,为兄弟院校开展AI赋能教育教学和课程数智化建设提供了参考思路。 展开更多
关键词 工科专业 ai赋能 实践教学管理
原文传递
抢占AI话语权:DeepSeek的技术优势、战略布局与未来生态图景 被引量:39
18
作者 段玉聪 《新疆师范大学学报(哲学社会科学版)》 北大核心 2025年第4期109-125,F0002,共18页
文本以全球AI话语权争夺为背景,探讨了中国初创公司DeepSeek在大规模语言模型领域中的技术突破与战略布局。一是解析DeepSeek在算法架构上的创新优势——包括混合专家(MoE)架构、多头潜在注意力(MLA)机制以及基于DIKWP理念的知识蒸馏与... 文本以全球AI话语权争夺为背景,探讨了中国初创公司DeepSeek在大规模语言模型领域中的技术突破与战略布局。一是解析DeepSeek在算法架构上的创新优势——包括混合专家(MoE)架构、多头潜在注意力(MLA)机制以及基于DIKWP理念的知识蒸馏与模型压缩技术,这些技术使其在性能与成本控制上具有显著竞争力;二是论述DeepSeek如何通过开源模式构建开放生态,与产业伙伴和标准制定机构广泛合作,进而在全球AI竞争中打破西方闭源模型的垄断;三是讨论国际标准化组织对AI能力评测的影响以及各国监管与合规挑战,通过对比分析OpenAI、Anthropic和Google DeepMind,展望未来AI生态图景及市场竞争态势。文本认为,DeepSeek凭借“技术+生态”双重优势,有望引领开源大模型发展,重塑全球AI话语权格局,推动AI技术向更加开放、透明和普惠的方向演进。 展开更多
关键词 DeepSeek ai话语权 开源大模型 算法创新 生态构建 监管合规 Openai
原文传递
AI for Science推动科研范式革新:创新知识服务视角下的“平台科研”范式 被引量:7
19
作者 毛进 周凡倩 王卓昊 《情报学报》 北大核心 2025年第2期132-142,共11页
立足科技情报知识服务视角,梳理AI for Science (AI4S)推动的“平台科研”范式内涵与框架。根据库恩范式理论论述了AI4S推动科研范式革新的必然性,采用培根归纳法总结的科学研究流程作为框架线索,阐明创新知识服务与“平台科研”范式的... 立足科技情报知识服务视角,梳理AI for Science (AI4S)推动的“平台科研”范式内涵与框架。根据库恩范式理论论述了AI4S推动科研范式革新的必然性,采用培根归纳法总结的科学研究流程作为框架线索,阐明创新知识服务与“平台科研”范式的互促共进关系并作为理论指导。创新知识服务视角下的“平台科研”范式以服务科研创新活动为宗旨,主要内容包括知识表示视角下的科学数据管理、知识融合视角下的通用知识库构建、知识推理视角下的科学假设预测、知识发现视角下的科学实验执行和知识应用视角下的工业赋能。本文提出了一种创新知识服务视角下的“平台科研”范式框架,旨在从创新知识服务角度理解“平台科研”范式,厘清各主要环节创新知识服务的核心研究内容,以期成为科技情报研究领域的新兴知识生长点,为我国抢抓AI4S科研范式革新机遇提供参考思路。 展开更多
关键词 ai for Science 创新知识服务 科研范式 平台科研
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部