The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primaril...The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.展开更多
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance...Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.展开更多
Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue feat...Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.62476278,12434009,and 12204533)the National Key R&D Program of China(Grant No.2024YFA1408601)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402)。
文摘The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.
基金supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)the University of Macao(MYRG2022-00271-FST)The Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.
文摘Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.