A new Ag/AgCl sensor for measuring marine electric fields was prepared and characterized through electrochemical methods and scanning electron microscopy.Its performance was evaluated in both laboratory and deep-water...A new Ag/AgCl sensor for measuring marine electric fields was prepared and characterized through electrochemical methods and scanning electron microscopy.Its performance was evaluated in both laboratory and deep-water settings.The study indicates that the double-pulse electrodeposition method is advantageous for producing Ag/AgCl sensors that maintain excellent stability over time.During a 20-day continuous stability test,the potential difference of the sensor consistently remained between -24.76μV and 62.07μV,with a minimum potential difference drift of 2.77μV per 24 h.All sensors accurately detected artificial signals in both the time and frequency domains,and their responses were consistent with one another.The minimum noise level of the sensor was 0.59 nV(√Hz)^(-1)@1 Hz.The sensor performed well in high-precision electric field measurements at a depth of approximately 2800 m in the South China Sea.The high stability and low noise level of the sensor make it an effective tool for detecting electrical conductivity structures beneath the seafloor.展开更多
使用烧结法制备了Ag/AgCl固态不极化海洋电场电极,利用聚丙烯腈碳纤维T300制备了电容型海洋电场电极。研究了不极化电极和电容型电极探测海洋电场的原理,提出了两种电极的使用方法并研究了其探测性能。使用电化学工作站对两种电极进了...使用烧结法制备了Ag/AgCl固态不极化海洋电场电极,利用聚丙烯腈碳纤维T300制备了电容型海洋电场电极。研究了不极化电极和电容型电极探测海洋电场的原理,提出了两种电极的使用方法并研究了其探测性能。使用电化学工作站对两种电极进了循环伏安测量和电极对极差跟踪;使用低频低噪声放大器对两种电极的自噪声稳定速度和大小进行对比测量;在自制水槽中测试了两种电极在不同频率下的响应性能。试验结果表明两种电极均可测量1 m Hz以上的交变海洋电场;相比于Ag/AgCl电极,碳纤维电极具有极差小和自噪声稳定速度快的特点;稳定后两种电极的自噪声均为1 n V/√Hz@1 Hz。展开更多
基金supported by the National Natural Science Foundation of China(Nos.U23B20158,91958210,42004055)。
文摘A new Ag/AgCl sensor for measuring marine electric fields was prepared and characterized through electrochemical methods and scanning electron microscopy.Its performance was evaluated in both laboratory and deep-water settings.The study indicates that the double-pulse electrodeposition method is advantageous for producing Ag/AgCl sensors that maintain excellent stability over time.During a 20-day continuous stability test,the potential difference of the sensor consistently remained between -24.76μV and 62.07μV,with a minimum potential difference drift of 2.77μV per 24 h.All sensors accurately detected artificial signals in both the time and frequency domains,and their responses were consistent with one another.The minimum noise level of the sensor was 0.59 nV(√Hz)^(-1)@1 Hz.The sensor performed well in high-precision electric field measurements at a depth of approximately 2800 m in the South China Sea.The high stability and low noise level of the sensor make it an effective tool for detecting electrical conductivity structures beneath the seafloor.
文摘使用烧结法制备了Ag/AgCl固态不极化海洋电场电极,利用聚丙烯腈碳纤维T300制备了电容型海洋电场电极。研究了不极化电极和电容型电极探测海洋电场的原理,提出了两种电极的使用方法并研究了其探测性能。使用电化学工作站对两种电极进了循环伏安测量和电极对极差跟踪;使用低频低噪声放大器对两种电极的自噪声稳定速度和大小进行对比测量;在自制水槽中测试了两种电极在不同频率下的响应性能。试验结果表明两种电极均可测量1 m Hz以上的交变海洋电场;相比于Ag/AgCl电极,碳纤维电极具有极差小和自噪声稳定速度快的特点;稳定后两种电极的自噪声均为1 n V/√Hz@1 Hz。