针对电源组合故障预测的需求,提出了一种基于人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化灰色神经网络的故障预测方法;文中首先对AFSA算法和灰色神经网络进行了介绍;然后在此基础上提出了基于AFSA优化灰色神经网络的故障...针对电源组合故障预测的需求,提出了一种基于人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化灰色神经网络的故障预测方法;文中首先对AFSA算法和灰色神经网络进行了介绍;然后在此基础上提出了基于AFSA优化灰色神经网络的故障预测模型,并给出了AFSA优化灰色神经网络参数的算法步骤;最后对制导雷达波束控制系统中的某电源组合进行了故障预测,预测结果表明该预测方法误差较小,达到了预期效果。展开更多
为解决结构数字孪生系统构建、结构健康监测系统搭建以及部分结构关键信息获取等过程中传感器的布局设计(布设)优化问题,研究了基于人工鱼群算法(Artificial Fish Swarms Algorithm,AFSA)的电阻应变传感器布设优化方法。分析了智能仿生...为解决结构数字孪生系统构建、结构健康监测系统搭建以及部分结构关键信息获取等过程中传感器的布局设计(布设)优化问题,研究了基于人工鱼群算法(Artificial Fish Swarms Algorithm,AFSA)的电阻应变传感器布设优化方法。分析了智能仿生优化算法中应用较广泛的遗传算法(Genetic Algorithm,GA)、粒子群算法(Particle Swarm Optimization,PSO)、AFSA的优势与不足,初步确定以AFSA作为电阻应变传感器布设优化方法的核心算法;以机翼长桁含孔结构为研究对象进行有限元分析,确定了应力集中部位为关键部位;根据AFSA的基本原理构建了电阻应变传感器布设区域坐标系,进行传感器布设问题向人工鱼群游动规则的转化,以及电阻应变传感器布设位置的寻优分析;最后,以传感器覆盖面积、优化所用时间为指标,对GA、PSO、AFSA的优化结果分别进行评估,进一步验证了此方法的有效性。基于AFSA的电阻应变传感器布设优化方法实现了对电阻应变传感器布设位置的快速优化,可根据具体工况随时修改鱼群游动规则及传感器数量,实用性较强,为数字孪生、结构健康监测等系统构建过程中的传感器布设问题提供解决方案与技术参考。展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algo...针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。展开更多
文摘针对电源组合故障预测的需求,提出了一种基于人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化灰色神经网络的故障预测方法;文中首先对AFSA算法和灰色神经网络进行了介绍;然后在此基础上提出了基于AFSA优化灰色神经网络的故障预测模型,并给出了AFSA优化灰色神经网络参数的算法步骤;最后对制导雷达波束控制系统中的某电源组合进行了故障预测,预测结果表明该预测方法误差较小,达到了预期效果。
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.
文摘针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。