UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp...UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.展开更多
针对风力涡轮机表面缺陷类型多、尺度差异大与特征提取困难等问题,提出了改进YOLOv7(you only look once version 7)算法用于风力涡轮机表面缺陷检测。首先,采用渐进金字塔网络(asymptotic feature pyramid network,AFPN)替换YOLOv7网...针对风力涡轮机表面缺陷类型多、尺度差异大与特征提取困难等问题,提出了改进YOLOv7(you only look once version 7)算法用于风力涡轮机表面缺陷检测。首先,采用渐进金字塔网络(asymptotic feature pyramid network,AFPN)替换YOLOv7网络中的路径聚合特征金字塔网络(path aggregation feature pyramid network,PAFPN),解决了多尺度融合过程中特征丢失和退化问题,并降低了模型复杂度;其次,采用扩充的高效聚合网络(efficient layer aggregation network-wide,ELAN-W)模块替换了AFPN中的基础模块,提高了模型的特征提取能力;最后,在颈部网络输入端以卷积和空间组增强(spatial group-wise enhance,SGE)注意力机制构建了卷积注意力模块,提升了模型对检测目标的定位能力和检测性能。实验结果表明,改进YOLOv7算法对风力涡轮机表面缺陷检测的平均精度均值、检测速度分别达到了85.4%、133.0帧/s,相较于原版YOLOv7算法分别提升了1.8%、17.7%。该研究成果能够有效地提升风力涡轮机表面缺陷检测性能。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62101275 and 62101274).
文摘UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.