With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating effi...Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating efficiency,and integrability.To facilitate comprehensive research on AFPMSM,this article reviews the developments in the research on the design and control optimization of AFPMSMs.First,the basic topologies of AFPMSMs are introduced and classified.Second,the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design,structure design,and material optimization.Third,because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles,the development status of efficiency-optimization control strategies is reviewed.Moreover,control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors(DCPMSMs)are summarized.An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors(CRPMSMs)is presented.Finally,the current difficulties and development trends revealed in this review are discussed.展开更多
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
基金Supported by Shanghai Municipal Natural Science Foundation of China (Grant No.19ZR1418600)。
文摘Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating efficiency,and integrability.To facilitate comprehensive research on AFPMSM,this article reviews the developments in the research on the design and control optimization of AFPMSMs.First,the basic topologies of AFPMSMs are introduced and classified.Second,the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design,structure design,and material optimization.Third,because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles,the development status of efficiency-optimization control strategies is reviewed.Moreover,control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors(DCPMSMs)are summarized.An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors(CRPMSMs)is presented.Finally,the current difficulties and development trends revealed in this review are discussed.