为了满足定子无磁轭分块电枢(yokeless and segmented armature,YASA)轴向磁通永磁电机作为车用牵引电机时对输出转矩高平稳性的要求,提出一种基于永磁体径向均匀分段、分组同向偏移的方法来抑制YASA电机的齿槽转矩,以降低转矩脉动。应...为了满足定子无磁轭分块电枢(yokeless and segmented armature,YASA)轴向磁通永磁电机作为车用牵引电机时对输出转矩高平稳性的要求,提出一种基于永磁体径向均匀分段、分组同向偏移的方法来抑制YASA电机的齿槽转矩,以降低转矩脉动。应用三维有限元分析,分别研究了3种不同的永磁体分段方案对齿槽转矩的削弱效果,确定了磁极的最优偏转角度及其对电机综合性能的影响。仿真结果验证了该方法的可行性。YASA电机的齿槽转矩降低了92.62%,额定工况下转矩脉动下降了72.02%,永磁体涡流损耗降低91.28%,同时输出转矩下降不超过5.34%,提高了YASA电机的综合性能。展开更多
In this manuscript,a new axial-flux permanentmagnet machine(AFPMM)is designed,analyzed,improved,and successfully tested.A double-sided AFPM generator with four layers of stator winding is initially designed using a we...In this manuscript,a new axial-flux permanentmagnet machine(AFPMM)is designed,analyzed,improved,and successfully tested.A double-sided AFPM generator with four layers of stator winding is initially designed using a well-known quasi-3D analytical method.Then,the designed machine is simulated using commercial software.It is shown that modification techniques are required to improve the performance of both the torque ripple and the ratio of the third to the fundamental harmonics of the induced voltage.Therefore,a new improvement technique is proposed,in which the layers of the stator winding are shifted relative to each other.While this new technique significantly improves the third harmonic problem,the design still has a high torque ripple and,thus,it is suggested to combine the proposed method with the conventional magnet shifting technique.It is revealed numerically that the resulting combination properly resolves both third harmonic and torque ripple problems.Therefore,this design is considered the main design of the present manuscript.In the end,a prototype of the main design is manufactured and tested.It is shown that the measurement results are in good agreement with those of numerical software.展开更多
文摘为了满足定子无磁轭分块电枢(yokeless and segmented armature,YASA)轴向磁通永磁电机作为车用牵引电机时对输出转矩高平稳性的要求,提出一种基于永磁体径向均匀分段、分组同向偏移的方法来抑制YASA电机的齿槽转矩,以降低转矩脉动。应用三维有限元分析,分别研究了3种不同的永磁体分段方案对齿槽转矩的削弱效果,确定了磁极的最优偏转角度及其对电机综合性能的影响。仿真结果验证了该方法的可行性。YASA电机的齿槽转矩降低了92.62%,额定工况下转矩脉动下降了72.02%,永磁体涡流损耗降低91.28%,同时输出转矩下降不超过5.34%,提高了YASA电机的综合性能。
文摘In this manuscript,a new axial-flux permanentmagnet machine(AFPMM)is designed,analyzed,improved,and successfully tested.A double-sided AFPM generator with four layers of stator winding is initially designed using a well-known quasi-3D analytical method.Then,the designed machine is simulated using commercial software.It is shown that modification techniques are required to improve the performance of both the torque ripple and the ratio of the third to the fundamental harmonics of the induced voltage.Therefore,a new improvement technique is proposed,in which the layers of the stator winding are shifted relative to each other.While this new technique significantly improves the third harmonic problem,the design still has a high torque ripple and,thus,it is suggested to combine the proposed method with the conventional magnet shifting technique.It is revealed numerically that the resulting combination properly resolves both third harmonic and torque ripple problems.Therefore,this design is considered the main design of the present manuscript.In the end,a prototype of the main design is manufactured and tested.It is shown that the measurement results are in good agreement with those of numerical software.