Pavement design tools are not universal. Indeed, in the sizing of pavements in the USA, the prediction models used in the calculation of the dynamic modulus of HMA are not adapted to the characterization of the minera...Pavement design tools are not universal. Indeed, in the sizing of pavements in the USA, the prediction models used in the calculation of the dynamic modulus of HMA are not adapted to the characterization of the mineral skeleton of the HMA mix designed with the French method.<span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">This article aims to assess the predictive models of the dynamic modulus used in the mechanistic-empirical design for their use in the design of bituminous pavements, and to develop new predictive models taking into account the sieve series LC and AFNOR standards. A total of six types of mixtures were subjected to the determination of complex modulus testing by direct tensile-compression on cylindrical specimens (26-700 LC) over a temperature range (5) and frequency (5) data. Dynamic modulus prediction models |</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">*| are studied Witczak model 1999 and model Witczak 2006. These models do not take into account the AFNOR or LC mesh sieve, an approach was made in relation to the US mesh sieve to replace </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">200</span></sub><span style="font-family:Verdana;"> (0.075 mm), </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> (4.76 mm), </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">38</span></sub><span style="font-family:Verdana;"> (9.5 mm) and </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">34</span></sub><span style="font-family:Verdana;"> (19 mm) respectively by the AFNOR mesh </span><i><span style="font-family:Verdana;">P</span></i><sub><span style="font-family:Verdana;">0.08</span></sub><span style="font-family:Verdana;"> (0.08 mm), </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">5</span></sub><span style="font-family:Verdana;"> (5 mm), </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> (10 mm) and </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">14</span></sub><span style="font-family:Verdana;"> (14 mm). The result is the production of two models whose are evaluated by correlation with the values |</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">*|</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">of modulus measured in the laboratory is satisfactory (</span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.83 respectively </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.71 and </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">-value = 0.00). The optimization of these approximate models gave new models with the same frame as the original models and a better correlation with the data observed in the laboratory (respectively </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0. 95 and </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.91 </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">-value = 0.00).</span></span>展开更多
The drinking water for all the inhabitants of Tangier is still an aim far from being achieved. Therefore, all rural areas and some urban areas feed water wells and springs whose composition and safety are unknown. In ...The drinking water for all the inhabitants of Tangier is still an aim far from being achieved. Therefore, all rural areas and some urban areas feed water wells and springs whose composition and safety are unknown. In the absence of data on water and ignorance of consumers towards the risk of poisoning and waterborne diseases transmitted by these waters, the authors conducted a study to determine the composition, physico-chemical quality and bacteriological these waters. This study is to provide a basic physico-chemical and bacteriological data from these waters in some urban areas of old or missing infrastructure in some sites in the province of Tangier. Such as Ziatine sites, Gzenaya, Rmilate, Malabata + Mnar, Mghoura + Aouama and Downtown. Analyzes are performed according to AFNOR methods (AFNOR: French Standards Association). The results indicate that these waters are generally mild and are experiencing significant geochemical imbalance. Moreover, these waters also have a significant organic and bacteriological pollution. It is concluded that the waters of these sites are of poor quality, unfit for human consumption.展开更多
文摘Pavement design tools are not universal. Indeed, in the sizing of pavements in the USA, the prediction models used in the calculation of the dynamic modulus of HMA are not adapted to the characterization of the mineral skeleton of the HMA mix designed with the French method.<span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">This article aims to assess the predictive models of the dynamic modulus used in the mechanistic-empirical design for their use in the design of bituminous pavements, and to develop new predictive models taking into account the sieve series LC and AFNOR standards. A total of six types of mixtures were subjected to the determination of complex modulus testing by direct tensile-compression on cylindrical specimens (26-700 LC) over a temperature range (5) and frequency (5) data. Dynamic modulus prediction models |</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">*| are studied Witczak model 1999 and model Witczak 2006. These models do not take into account the AFNOR or LC mesh sieve, an approach was made in relation to the US mesh sieve to replace </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">200</span></sub><span style="font-family:Verdana;"> (0.075 mm), </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> (4.76 mm), </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">38</span></sub><span style="font-family:Verdana;"> (9.5 mm) and </span><i><span style="font-family:Verdana;">ρ</span></i><sub><span style="font-family:Verdana;">34</span></sub><span style="font-family:Verdana;"> (19 mm) respectively by the AFNOR mesh </span><i><span style="font-family:Verdana;">P</span></i><sub><span style="font-family:Verdana;">0.08</span></sub><span style="font-family:Verdana;"> (0.08 mm), </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">5</span></sub><span style="font-family:Verdana;"> (5 mm), </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> (10 mm) and </span><i><span style="font-family:Verdana;">R</span></i><sub><span style="font-family:Verdana;">14</span></sub><span style="font-family:Verdana;"> (14 mm). The result is the production of two models whose are evaluated by correlation with the values |</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">*|</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">of modulus measured in the laboratory is satisfactory (</span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.83 respectively </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.71 and </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">-value = 0.00). The optimization of these approximate models gave new models with the same frame as the original models and a better correlation with the data observed in the laboratory (respectively </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0. 95 and </span><i><span style="font-family:Verdana;">R</span></i><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> = 0.91 </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">-value = 0.00).</span></span>
文摘The drinking water for all the inhabitants of Tangier is still an aim far from being achieved. Therefore, all rural areas and some urban areas feed water wells and springs whose composition and safety are unknown. In the absence of data on water and ignorance of consumers towards the risk of poisoning and waterborne diseases transmitted by these waters, the authors conducted a study to determine the composition, physico-chemical quality and bacteriological these waters. This study is to provide a basic physico-chemical and bacteriological data from these waters in some urban areas of old or missing infrastructure in some sites in the province of Tangier. Such as Ziatine sites, Gzenaya, Rmilate, Malabata + Mnar, Mghoura + Aouama and Downtown. Analyzes are performed according to AFNOR methods (AFNOR: French Standards Association). The results indicate that these waters are generally mild and are experiencing significant geochemical imbalance. Moreover, these waters also have a significant organic and bacteriological pollution. It is concluded that the waters of these sites are of poor quality, unfit for human consumption.