Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability...Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics.Here,we demonstrated an atomic force microscope(AFM)tip manipulation method to control the interlayer twist angle of epitaxial MoS_(2)/graphene heterostructure with an ultra-high accuracy better than 0.1°.Furthermore,conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moirépattern wavelength,phonons and excitons.Our work provides a technique to precisely control the twist angle of 2D moirématerials,enabling the possibility to establish the phase diagrams of moiréphysics with twist angle.展开更多
While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution eff...While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.展开更多
基金Project supported by the Natioanl Natural Science Foundation of China(Grant Nos.62122084,12074412,61888102,and 11834017)。
文摘Two-dimensional(2D)moirématerials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties.Although great progress has been achieved,the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics.Here,we demonstrated an atomic force microscope(AFM)tip manipulation method to control the interlayer twist angle of epitaxial MoS_(2)/graphene heterostructure with an ultra-high accuracy better than 0.1°.Furthermore,conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moirépattern wavelength,phonons and excitons.Our work provides a technique to precisely control the twist angle of 2D moirématerials,enabling the possibility to establish the phase diagrams of moiréphysics with twist angle.
文摘While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.