Indoor environment separated with down-feed air curtain was numerically simulated and experimen-tally researched. Indoor airflow and temperature fields separated with air curtain were numerically simulated. Re-sults s...Indoor environment separated with down-feed air curtain was numerically simulated and experimen-tally researched. Indoor airflow and temperature fields separated with air curtain were numerically simulated. Re-sults show that both polluted airflow and thermal air current can be separated with a down-feed air curtain to pre-vent contaminants from spreading in the room space. In a test chamber, the smoke of burning Tibetan incense served as the source of contaminants, and the probe test shows that 1.0 μm is the prevailing diameter of the smoke particles. During the release of the smoke, the particle concentration of the indoor air was tested with a laser particle counter at the points of three different heights from the floor when the air curtain was running or not. Experimental results show that the higher the test point is located, the lower the particle concentration is, implying that the sepa-rating or isolating effect decreases as the air velocity of the curtain reduces along with the height descends. Accord-ing to both simulation and experimental results, down-feed air curtain can separate indoor environment effectively when the supply air velocity of air curtain is not less than 3 m/s. In order to strengthen separation effect, it is sug-gested that the supply air velocity be speeded up to 5 m/s.展开更多
文摘传统人脸识别算法通常把光照处理和姿态校正作为两个相对独立的处理过程,难以取得全局最优识别性能.针对该问题,本文根据人脸的非刚体特性,将仿射变换和分块思想融入线性重构模型中,提出了一种基于仿射最小线性重构误差(Affine Minimum Linear Reconstruction Error,AMLRE)的人脸识别算法,在处理光照问题的同时能够补偿姿态变化造成的局部区域对齐误差,以获得更好的全局识别性能.在公共数据集上的实验结果表明,本文提出的算法对光照和姿态有很好的鲁棒性,同时与现有的人脸识别算法相比,本文的算法具有更高的识别率.
基金Supported by Science Foundation of Tianjin Higher Educational Committee (No. 20031109).
文摘Indoor environment separated with down-feed air curtain was numerically simulated and experimen-tally researched. Indoor airflow and temperature fields separated with air curtain were numerically simulated. Re-sults show that both polluted airflow and thermal air current can be separated with a down-feed air curtain to pre-vent contaminants from spreading in the room space. In a test chamber, the smoke of burning Tibetan incense served as the source of contaminants, and the probe test shows that 1.0 μm is the prevailing diameter of the smoke particles. During the release of the smoke, the particle concentration of the indoor air was tested with a laser particle counter at the points of three different heights from the floor when the air curtain was running or not. Experimental results show that the higher the test point is located, the lower the particle concentration is, implying that the sepa-rating or isolating effect decreases as the air velocity of the curtain reduces along with the height descends. Accord-ing to both simulation and experimental results, down-feed air curtain can separate indoor environment effectively when the supply air velocity of air curtain is not less than 3 m/s. In order to strengthen separation effect, it is sug-gested that the supply air velocity be speeded up to 5 m/s.