The efficient implementation of the Advanced Encryption Standard(AES)is crucial for network data security.This paper presents novel hardware implementations of the AES S-box,a core component,using tower field represen...The efficient implementation of the Advanced Encryption Standard(AES)is crucial for network data security.This paper presents novel hardware implementations of the AES S-box,a core component,using tower field representations and Boolean Satisfiability(SAT)solvers.Our research makes several significant contri-butions to the field.Firstly,we have optimized the GF(24)inversion,achieving a remarkable 31.35%area reduction(15.33 GE)compared to the best known implementations.Secondly,we have enhanced multiplication implementa-tions for transformation matrices using a SAT-method based on local solutions.This approach has yielded notable improvements,such as a 22.22%reduction in area(42.00 GE)for the top transformation matrix in GF((24)2)-type S-box implementation.Furthermore,we have proposed new implementations of GF(((22)2)2)-type and GF((24)2)-type S-boxes,with the GF(((22)2)2)-type demonstrating superior performance.This implementation offers two variants:a small area variant that sets new area records,and a fast variant that establishes new benchmarks in Area-Execution-Time(AET)and energy consumption.Our approach significantly improves upon existing S-box implementations,offering advancements in area,speed,and energy consumption.These optimizations contribute to more efficient and secure AES implementations,potentially enhancing various cryptographic applications in the field of network security.展开更多
基金supported in part by the National Natural Science Foundation of China(No.62162016)in part by the Innovation Project of Guangxi Graduate Education(Nos.YCBZ2023132 and YCSW2023304).
文摘The efficient implementation of the Advanced Encryption Standard(AES)is crucial for network data security.This paper presents novel hardware implementations of the AES S-box,a core component,using tower field representations and Boolean Satisfiability(SAT)solvers.Our research makes several significant contri-butions to the field.Firstly,we have optimized the GF(24)inversion,achieving a remarkable 31.35%area reduction(15.33 GE)compared to the best known implementations.Secondly,we have enhanced multiplication implementa-tions for transformation matrices using a SAT-method based on local solutions.This approach has yielded notable improvements,such as a 22.22%reduction in area(42.00 GE)for the top transformation matrix in GF((24)2)-type S-box implementation.Furthermore,we have proposed new implementations of GF(((22)2)2)-type and GF((24)2)-type S-boxes,with the GF(((22)2)2)-type demonstrating superior performance.This implementation offers two variants:a small area variant that sets new area records,and a fast variant that establishes new benchmarks in Area-Execution-Time(AET)and energy consumption.Our approach significantly improves upon existing S-box implementations,offering advancements in area,speed,and energy consumption.These optimizations contribute to more efficient and secure AES implementations,potentially enhancing various cryptographic applications in the field of network security.