In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of v...In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.展开更多
Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the ...Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the aerodynamics related to small,fixed-wing as well as flapping-wing flight vehicles.From an evolutionary viewpoint,flyers have gone through many iterations,adaptations,and optimizations to balance their biological functions,including flight.In the low-Reynolds-number regime,the aerodynamic characteristics around a solid object differ from those observed at the scale of passenger-airplanes.Consequently,the optimal airfoil and wing shapes vary with vehicle size.As vehicle dimensions vary,non-proportional scaling between surface areas and weight shifts the dominance of physical mechanisms,leading to distinct operational parameters and technical requirements.With smaller flight vehicles,structural flexibility as well as anisotropic material properties become more pronounced,which causes qualitative changes in aerodynamics.The flapping motion of the wings,the interactions between wings,the synergistic characteristics of wing and tail,and the development of soft structures for better agility and flight performance are discussed.Low-Reynolds-number aerodynamics require collaborative innovation to optimize shape,motion,and structure of vehicles in accordance with the scaling laws.Together,progress on these fronts is reshaping the design paradigm of air vehicles and other types of robots with shrinking physical dimensions and more versatile capabilities to meet wider ranges of missions.展开更多
The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle...The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.展开更多
Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the...Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.展开更多
To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The metho...To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design.展开更多
Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi...Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.展开更多
Humans’initial desire for flight stems from the imitation of flying creatures in nature.The excellent flight performance of flying animals will inevitably become a source of inspiration for researchers.Bio-inspired f...Humans’initial desire for flight stems from the imitation of flying creatures in nature.The excellent flight performance of flying animals will inevitably become a source of inspiration for researchers.Bio-inspired flight systems have become one of the most exciting disruptive aviation technologies.This review is focused on the recent progresses in bio-inspired flight systems and bionic aerodynamics.First,the development path of Biomimetic Air Vehicles(BAVs)for bio-inspired flight systems and the latest mimetic progress are summarized.The advances of the flight principles of several natural creatures are then introduced,from the perspective of bionic aerodynamics.Finally,several new challenges of bionic aerodynamics are proposed for the autonomy and intelligent development trend of the bio-inspired smart aircraft.This review will provide an important insight in designing new biomimetic air vehicles.展开更多
The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects...The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.展开更多
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effec...Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.展开更多
A rapid engineering surface panel method to analyze aerodynamics and aerothermodynamics of hypersonic vehicles is developed.To obtain the surface pressure distribution of a hypersonic vehicle,the local surface inclina...A rapid engineering surface panel method to analyze aerodynamics and aerothermodynamics of hypersonic vehicles is developed.To obtain the surface pressure distribution of a hypersonic vehicle,the local surface inclination method is applied to calculate the pressure coefficient for each surface panel element,of which the normal vector is corrected first by using an efficient data structure and Rey-casting algorithm,local Reynolds numbers are calculated according to the geometric streamline method,then the aerodynamic heating flux is computed by both reference enthalpy relations and Reynolds analogy method.Several typical test cases are performed and the results indicate that,the developed tool is effective in predicting the aerodynamics/aerothermodynamics for complex geometry of hypersonic vehicle in a wide range of Mach numbers with a sufficient accuracy.展开更多
Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To re...Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To reveal the flying abilities, avian geometry of a golden eagle was extracted based on noncontact surface measurements using a ROMBER three-dimensional laser scanner. Distributions of a camber line, thickness and a secondary feather line of the extracted point cloud were fitted using convenient analytical expressions. A traditional airfoil was established with the camber line and thickness, then a combined airfoil was constructed by combining the traditional airfoil with a secondary feather. Oscillations of an airfoil as well as rapid pitch up were simplified as a sine wave around the quarter chord axis. Thereafter, both steady and unsteady aerodynamic performances of the airfoil are computed, the influences of the secondary feather on the steady and unsteady aerodynamics were further studied.展开更多
A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method i...A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.展开更多
In modern gas turbines,the High Pressure Turbine(HPT)is exposed to an extreme thermal environment due to the burned gases leaving the combustor.The burned gases are characterized by flow and temperature distortions th...In modern gas turbines,the High Pressure Turbine(HPT)is exposed to an extreme thermal environment due to the burned gases leaving the combustor.The burned gases are characterized by flow and temperature distortions that effect the aerodynamics and heat transfer of the turbine.The purpose of this paper is to investigate numerically the effect of the intensity of the swirling flow combined with the temperature non-uniformity‘‘Hot-Streak"(H-S)on the aerothermal performances of a HPT Nozzle Guide Vane(NGV).The investigations are conducted on the solid untwisted NGV annular cascade developed in NASA Lewis Research Center.Four swirl intensities(|S_(n)|=0,0.1,0.25 and 0.5),two swirl orientations(positive and negative)and two hot-streaks(rounded and radial)at the NGV inlet are considered.The simulations are done by solving the Reynolds Averaged Navier-Stokes(RANS)equations using ANSYS-CFX software.The results show that the H-S with swirl undergoes twisting following the orientation of the swirl.The H-S twist is aggressive under positive swirl compared to the negative swirl case.The inlet swirl generates a new secondary flow structure,so called Swirl Vortex(SV),which induces more aerodynamic losses.The aerodynamic efficiency under negative swirl found to be higher than that under positive swirl.The maximum temperature on the vane surface is controlled by the radial transport of the SV towards the endwalls.展开更多
The irregularities on trains bodies are normally ignored or greatly simplified in studies concerned with aerodynamics.However,surface roughness is known to affect the flow characteristics in the boundary layer near th...The irregularities on trains bodies are normally ignored or greatly simplified in studies concerned with aerodynamics.However,surface roughness is known to affect the flow characteristics in the boundary layer near the wall,hence potentially influencing the aerodynamic performance of a train.This work investigates the effects of roughness on the overall aerodynamic characteristics of a high-speed train subjected to crosswinds.Both experimental work and numerical work have been conducted to simulate a typical high-speed train with a 90?yaw angle,with both a smooth and rough surface.Roughness is applied to the roof of the train surface in the form of longitudinal strips.Results reveal that the addition of roughness is able to reduce the surface pressure on the roof and leeside of the train.Numerical results agree well with experimental ones and confirm that an increase in the roughness relative size can effectively restrain flow separation and reduce surface pressure.Moreover,numerical simulation results show that side force coefficient and roll moment coefficient subjected to rough model significantly decreased compared with smooth model.The conclusions drawn in this study offer the chance to derive critical reference values for the optimization of the aerodynamic characteristics of high-speed trains.展开更多
Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 Ma 0.7. The formulation herein proposed extends wellknown aerodynamic theories, which are...Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 Ma 0.7. The formulation herein proposed extends wellknown aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to generic trapezoidal wing planforms. Firstly, a thorough study is executed to assess the accuracy and limitation of analytical predictions, using unsteady results from two state-of-the-art computational fluid dynamics solvers as cross-validated benchmarks. Indicial functions are calculated for a step change in the angle of attack and for a sharp-edge gust, each for four wing configurations and three Mach numbers. Then, analytical and computational indicial responses are used to predict dynamic derivatives and the maximum lift coefficient following an encounter with a one-minus-cosine gust. It is found that the analytical results are in excellent agreement with the computational results for all test cases. In particular, the deviation of the analytical results from the computational results is within the scatter or uncertainty in the data arising from using two computational fluid dynamics solvers. This indicates the usefulness of the developed analytical theories.展开更多
The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system an...The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.展开更多
This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotation...This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced.展开更多
A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projecti...A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52372403 and U2268211)the Natural Science Foundation of Sichuan Province(No.2022NSFSC0034),China+1 种基金the National Railway Group Science and Technology Program(No.2023J071)the Traction Power State Key Laboratory of the Independent Research and Development Projects(No.2022TPL-T02),China.
文摘In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.
基金supported by the Research Grants Council(RGC)of the Government of Hong Kong Special Administrative Region(HKSAR)with RGC/GRF Project(Grant Nos.16206321 and 14113824).
文摘Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the aerodynamics related to small,fixed-wing as well as flapping-wing flight vehicles.From an evolutionary viewpoint,flyers have gone through many iterations,adaptations,and optimizations to balance their biological functions,including flight.In the low-Reynolds-number regime,the aerodynamic characteristics around a solid object differ from those observed at the scale of passenger-airplanes.Consequently,the optimal airfoil and wing shapes vary with vehicle size.As vehicle dimensions vary,non-proportional scaling between surface areas and weight shifts the dominance of physical mechanisms,leading to distinct operational parameters and technical requirements.With smaller flight vehicles,structural flexibility as well as anisotropic material properties become more pronounced,which causes qualitative changes in aerodynamics.The flapping motion of the wings,the interactions between wings,the synergistic characteristics of wing and tail,and the development of soft structures for better agility and flight performance are discussed.Low-Reynolds-number aerodynamics require collaborative innovation to optimize shape,motion,and structure of vehicles in accordance with the scaling laws.Together,progress on these fronts is reshaping the design paradigm of air vehicles and other types of robots with shrinking physical dimensions and more versatile capabilities to meet wider ranges of missions.
基金funded by the“Hundred Outstanding Talents”Support Program of Jining University,a provincial-level key project in the field of natural sciences,grant number 2023ZYRC23Jining Key R&D Program(Soft Science)Project,No.2024JNZC010Shandong Province Key Research and Development Program(Technology-Based Small and Medium-sized Enterprises Innovation Capability Improvement)Project No.2025TSGCCZZB0679.
文摘The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.
基金supported by the National Science and Technology Major Project,China(No.Y2019-I-0018-0017)the National Natural Science Foundation of China(No.11602200)+1 种基金Hunan Innovative Province Construction Special Fund,China(No.2021GK1020)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.
基金Supported by the Aviation Science Foundation of China (2007ZA56001)the National Natural Science Foundation of China(50865009)~~
文摘To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design.
基金a Multidisciplinary University Research Initiative (MURI) project sponsored by AFOSR
文摘Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.
基金This work was supported by the National Natural Science Foundation of China(Nos.11872293,11672225 and 11602199)China Postdoctoral Science Foundation(No.2017M623184)+1 种基金the National Key Laboratory of Science and Technology on Aerodynamic Design and Research of China(No.6142201190408)the Key Laboratory of Aerodynamics Noise Control of China(Nos.1801ANCL20180103,1901ANCL20190108),Australian Research Council(Nos.DP200101500 and DE160101098),and the Program of Introducing Talents of Discipline to Universities of China(known as the‘‘111”Program,No.B18040).
文摘Humans’initial desire for flight stems from the imitation of flying creatures in nature.The excellent flight performance of flying animals will inevitably become a source of inspiration for researchers.Bio-inspired flight systems have become one of the most exciting disruptive aviation technologies.This review is focused on the recent progresses in bio-inspired flight systems and bionic aerodynamics.First,the development path of Biomimetic Air Vehicles(BAVs)for bio-inspired flight systems and the latest mimetic progress are summarized.The advances of the flight principles of several natural creatures are then introduced,from the perspective of bionic aerodynamics.Finally,several new challenges of bionic aerodynamics are proposed for the autonomy and intelligent development trend of the bio-inspired smart aircraft.This review will provide an important insight in designing new biomimetic air vehicles.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project(B07009)
文摘The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.
文摘Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.
基金supported by the National Natural Science Foundation of China(No.11672133)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX16_0392)the Priority Academic Program Development of Jiangsu Education Institutions
文摘A rapid engineering surface panel method to analyze aerodynamics and aerothermodynamics of hypersonic vehicles is developed.To obtain the surface pressure distribution of a hypersonic vehicle,the local surface inclination method is applied to calculate the pressure coefficient for each surface panel element,of which the normal vector is corrected first by using an efficient data structure and Rey-casting algorithm,local Reynolds numbers are calculated according to the geometric streamline method,then the aerodynamic heating flux is computed by both reference enthalpy relations and Reynolds analogy method.Several typical test cases are performed and the results indicate that,the developed tool is effective in predicting the aerodynamics/aerothermodynamics for complex geometry of hypersonic vehicle in a wide range of Mach numbers with a sufficient accuracy.
文摘Bird flight is a remarkable adaption that has allowed thousands of species to colonize all terrestrial habitats. A golden eagle has impressive flying abilities, such as hovering, perching, preying and attacking. To reveal the flying abilities, avian geometry of a golden eagle was extracted based on noncontact surface measurements using a ROMBER three-dimensional laser scanner. Distributions of a camber line, thickness and a secondary feather line of the extracted point cloud were fitted using convenient analytical expressions. A traditional airfoil was established with the camber line and thickness, then a combined airfoil was constructed by combining the traditional airfoil with a secondary feather. Oscillations of an airfoil as well as rapid pitch up were simplified as a sine wave around the quarter chord axis. Thereafter, both steady and unsteady aerodynamic performances of the airfoil are computed, the influences of the secondary feather on the steady and unsteady aerodynamics were further studied.
文摘A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.
文摘In modern gas turbines,the High Pressure Turbine(HPT)is exposed to an extreme thermal environment due to the burned gases leaving the combustor.The burned gases are characterized by flow and temperature distortions that effect the aerodynamics and heat transfer of the turbine.The purpose of this paper is to investigate numerically the effect of the intensity of the swirling flow combined with the temperature non-uniformity‘‘Hot-Streak"(H-S)on the aerothermal performances of a HPT Nozzle Guide Vane(NGV).The investigations are conducted on the solid untwisted NGV annular cascade developed in NASA Lewis Research Center.Four swirl intensities(|S_(n)|=0,0.1,0.25 and 0.5),two swirl orientations(positive and negative)and two hot-streaks(rounded and radial)at the NGV inlet are considered.The simulations are done by solving the Reynolds Averaged Navier-Stokes(RANS)equations using ANSYS-CFX software.The results show that the H-S with swirl undergoes twisting following the orientation of the swirl.The H-S twist is aggressive under positive swirl compared to the negative swirl case.The inlet swirl generates a new secondary flow structure,so called Swirl Vortex(SV),which induces more aerodynamic losses.The aerodynamic efficiency under negative swirl found to be higher than that under positive swirl.The maximum temperature on the vane surface is controlled by the radial transport of the SV towards the endwalls.
基金The work was financed by the program of China Scholarships Council,Youth Innovation Promotion Association CAS(2019020)a University of Birmingham(UK)funded scholarship and was supported by the EU H2O2O project LiftTRAIN(701693)。
文摘The irregularities on trains bodies are normally ignored or greatly simplified in studies concerned with aerodynamics.However,surface roughness is known to affect the flow characteristics in the boundary layer near the wall,hence potentially influencing the aerodynamic performance of a train.This work investigates the effects of roughness on the overall aerodynamic characteristics of a high-speed train subjected to crosswinds.Both experimental work and numerical work have been conducted to simulate a typical high-speed train with a 90?yaw angle,with both a smooth and rough surface.Roughness is applied to the roof of the train surface in the form of longitudinal strips.Results reveal that the addition of roughness is able to reduce the surface pressure on the roof and leeside of the train.Numerical results agree well with experimental ones and confirm that an increase in the roughness relative size can effectively restrain flow separation and reduce surface pressure.Moreover,numerical simulation results show that side force coefficient and roll moment coefficient subjected to rough model significantly decreased compared with smooth model.The conclusions drawn in this study offer the chance to derive critical reference values for the optimization of the aerodynamic characteristics of high-speed trains.
基金the Royal Academy of Engineering for funding this researchthe use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work
文摘Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 Ma 0.7. The formulation herein proposed extends wellknown aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to generic trapezoidal wing planforms. Firstly, a thorough study is executed to assess the accuracy and limitation of analytical predictions, using unsteady results from two state-of-the-art computational fluid dynamics solvers as cross-validated benchmarks. Indicial functions are calculated for a step change in the angle of attack and for a sharp-edge gust, each for four wing configurations and three Mach numbers. Then, analytical and computational indicial responses are used to predict dynamic derivatives and the maximum lift coefficient following an encounter with a one-minus-cosine gust. It is found that the analytical results are in excellent agreement with the computational results for all test cases. In particular, the deviation of the analytical results from the computational results is within the scatter or uncertainty in the data arising from using two computational fluid dynamics solvers. This indicates the usefulness of the developed analytical theories.
基金The Fundamental Research Funds for the Central Universities(No.3202003905)Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0080)
文摘The aerodynamics of 2-dimensional flexible wings in bees' normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a bodyfixed system, a rigid wing-fixed system and a flexible wingfixed system, are established to represent the insects' position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.
文摘This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced.
基金supported by Youth Science and Technology Research FundShanxi Province Applied Basic Research Projectgrant number 201801D221039+2 种基金Science Foundation of North University of China grant number XJJ201813Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi grant number 2019L0570Aeronautical Science Foundation of China grant number 2019020U0002。
文摘A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.