Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the...Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.展开更多
The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise int...The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.展开更多
Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for ae...Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.展开更多
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In thi...Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.展开更多
Rotor noise is one of the most important reasons for restricting helicopter development;hence,the optimization design of rotor blade considering aeroacoustic and aerodynamic performance at the same time has always bee...Rotor noise is one of the most important reasons for restricting helicopter development;hence,the optimization design of rotor blade considering aeroacoustic and aerodynamic performance at the same time has always been the focus of research attention.For complex rotor design problems with a large number of design variables,the efficiency of the traditional Kriging model needs to be improved.Thus,Hierarchical Kriging(HK)model is employed in this study for rotor optimization design.By using the validated RANS solver and acoustic method based on the FWHpds equation,an efficient aerodynamic/aeroacoustic optimization method for high-dimensional problem of rotors in hover based on HK model is developed.By using present HK model and new infill-sampling criteria,the number of design variables is increased from less than 20-53.Results of two analytical function test cases show that the HK model is efficient and accurate in calculation.Subsequently,the helicopter rotor blade is optimally designed for aerodynamic/aeroacoustic performance in hover based on the HK model with high dimensional design variables.The objective function is adopted to improve the rotational noise characteristics by reducing the absolute peak of the acoustic pressure.In addition,the constraints of thrust,hover efficiency,solidity,and airfoils thickness are strictly satisfied.Optimization results show that the Kriging model finds the objective of reducing the noise by 2.87 dB after 248 iterations while the HK model does it only after 164 iterations.The optimization efficiency of the HK model is significantly higher than that of the traditional Kriging model.In the case analyzed,the HK model saves 35%of the time used by the Kriging model.展开更多
It is of great significance to develop a high-efficiency and low-noise propeller optimization method for new-generation propeller aircraft design.Coupled with free form deformation method,dynamic mesh interpolation te...It is of great significance to develop a high-efficiency and low-noise propeller optimization method for new-generation propeller aircraft design.Coupled with free form deformation method,dynamic mesh interpolation technology,optimization algorithm,surrogate model,aerodynamic calculation and aeroacoustic prediction model module,the integrated aerodynamic and aeroacoustic design method of propeller is built.The optimization design for the six-blade propeller is carried out.The non-reduction in efficiency,thrust coefficient and the minimum of aerodynamic noise is treated as the optimization design objective.The spatial vorticity distribution of the propeller before and after the design is also analyzed by using unsteady computational fluid dynamics method.The results show that the optimized propeller can effectively reduce the aerodynamic noise level.The maximum total sound pressure level can be reduced by 5 dB without reducing its aerodynamic performance.The developed method has good application potential in low-noise optimization design of propeller and other rotating machinery.展开更多
The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was an...The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was analysed in the frame of the Ffowcs Williams-Hawkings(FW-H)acoustic analogy.According to the results,the contact strip,base frame and knuckle are the main aerodynamic noise sources,with vortex shedding,flow separation and recombination around the pantograph being related key physical factors.The aerodynamic noise radiates outwards in the form of spherical waves when the distance of the noise receiving point is farther than 8 m.The sound pressure level(SPL)grows approximately as the 6th power of pantograph operating speed.The aerodynamic noise energy is mainly concentrated in the region of 400-1000 Hz,and the frequency band is wider with crosswind than without crosswind.The peak frequency displays a linear relationships with the operating speed and crosswind velocity,respectively.The aerodynamic and aeroacoustic generation from the knuckle-downstream orientation of the pantograph is superior to those of the knuckle-upstream orientation model.This finding may be used for the optimal design of future pantograph configurations in the presence of crosswind.展开更多
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of a...Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.展开更多
The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-paramet...The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.展开更多
High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical i...High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical issues associated with high-order schemes on an adaptively refined mesh, such as stability and accuracy are addressed. Several CAA benchmark problems are used to demonstrate the feasibility and efficiency of the approach.展开更多
Owls are widely known for their silent flight,which is attributed to their unique wing morphologies comprising leading-edge(LE)serrations,trailing-edge(TE)fringes,and a velvety surface.The aeroacoustic characteristics...Owls are widely known for their silent flight,which is attributed to their unique wing morphologies comprising leading-edge(LE)serrations,trailing-edge(TE)fringes,and a velvety surface.The aeroacoustic characteristics of owl-inspired TE fringes have been widely investigated through two-dimensional(2D)modeling,but remain yet poorly studied in association with their three-dimensional(3D)effects.Here,we present a numerical study of the 3D aeroacoustic characteristics of owl-inspired TE fringes in which we combined large-eddy simulations(LES)with the Ffowcs Williams‒Hawkings analogy.We constructed a clean wing model and three wing models with TE fringes that were distributed differently spanwise.The aerodynamic forces and 3D acoustic characteristics reveal that,like the 2D results of our previous studies,the 3D TE fringes enable remarkable sound reduction spatially while having aerodynamic performance comparable to the clean model.Visualizations of the near-field 3D flow structures,vortex dynamics,and flow fluctuations show that TE fringes can robustly alter the 3D flow by breaking 3D TE vortices into small eddies and mitigating 3D flow fluctuations.Particularly,it is verified that TE fringes alter spanwise flows,thus dominating the 3D aeroacoustic characteristics in terms of passive flow control and flow stabilizations,whereas the fringes are inefficient in suppressing the acoustic sources induced by wingtip vortices.Moreover,the TE fringes distributed at midspan have better acoustic performance than those in the vicinity of the wingtip,indicating the importance of a spanwise distribution in enhancing aeroacoustic performance.展开更多
Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( A...Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.展开更多
Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study...Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.展开更多
Delayed detached eddy simulation(DDES)is performed to investigate an open cavity at Ma0.85.Clean cavity and cavity with leading-edge saw tooth spoiler and flattop spoiler,are modeled.The results obtained from clean ca...Delayed detached eddy simulation(DDES)is performed to investigate an open cavity at Ma0.85.Clean cavity and cavity with leading-edge saw tooth spoiler and flattop spoiler,are modeled.The results obtained from clean cavity prediction are compared with experimental sound pressure level(SPL)data from QinetiQ,UK.DDES results agree well with the experimental data.Furthermore,comparisons are made with the predicted SPL between the three configurations to find out the effect of different passive control methods.Both the spoilers can suppress the over-all SPL up to 8dB.The main focuses of this investigation are to exam the DDES method on cavity aeroacoustic analysis and test the noise suppression effect by saw tooth spoiler and flattop spoiler.展开更多
We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical d...We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction.展开更多
On the purpose of accurate data acquisition for the aeroacoustic testing mostly in open jet test section of aeroacoustic wind tunnel, the large scale anechoic chamber is specifically designed to build the low backgrou...On the purpose of accurate data acquisition for the aeroacoustic testing mostly in open jet test section of aeroacoustic wind tunnel, the large scale anechoic chamber is specifically designed to build the low background noise environment. A newly acoustic test section is presented in this paper, of which the contour is similar as the closed test section, and the wall is fabricated by the fiber fabric, both the characteristics of closed and open jet test section of conventional wind tunnel are combined in it. By thoroughly researching on the acoustics and aerodynamics of this acoustically transparent test section, significant progress in reducing the background noises in test section and improving the ratio of energy of the wind tunnel and some other aspects have been achieved. Acoustically transparent test section behaves better in acoustics and aerodynamics than conventional acoustic test section because of their high definition in detecting the sound sources and great performance in transmitting sounds.展开更多
In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an ...In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.展开更多
The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to s...The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to simulate vocal fold vibration during phonation.This has always been a hot topic in pathological linguistics research.Over the past few decades,researchers have designed various types of mass models of vocal fold vibration based on experiments.These models differ in principles,computational complexity,and degrees of freedom.Therefore,we classify and describe the mass models according to modeling methods.We summarize the research status and characteristics of different models,and based on this,we look forward to future research directions for vocal fold mass models.展开更多
A hybrid noise computation method is presented in this paper.Large-eddy simulation with wall-model equation is proposed to compute the flow field.With a stress-balanced wall-model equation,the near-wall computation co...A hybrid noise computation method is presented in this paper.Large-eddy simulation with wall-model equation is proposed to compute the flow field.With a stress-balanced wall-model equation,the near-wall computation cost of large eddy simulation was effectively reduced.The instantaneous flow variables obtained by the large-eddy simulation were used to compute the noise source terms of the Ffowcs Williams-Hawkings equation.The present method was investigated with two test cases:a single cylinder at Re=10,000 and a rod-airfoil at Re=480,000.The flow quantities and aeroacoustic characteristics were compared with the reference data.The mean velocity profiles and spectra of the flow fluctuations were consistent with data from the literature.When compared with the reference data,the noise computation error was less than 3 dB.The computation results demonstrate the present wall-modeled large eddy simulation is efficient for the noise computation of complex vortex shedding flows.展开更多
In this paper, the research work on aeroacoustics in turbomachinery done in the Thermoturbomachinery institute, Department of Power Machinery Engineering, Shanghai Jiao Tong University, for the past 15 years is summar...In this paper, the research work on aeroacoustics in turbomachinery done in the Thermoturbomachinery institute, Department of Power Machinery Engineering, Shanghai Jiao Tong University, for the past 15 years is summarized. It includes: aeroacoustic similarity law and correction ofnon--similarity) mechanism of acoustic control of separated flow, aerodynamic and aeroacoustic comprehensive optimum calculation, and the influence of inlet turbulence and inlet distortion.展开更多
基金supported by the National Science and Technology Major Project,China(No.Y2019-I-0018-0017)the National Natural Science Foundation of China(No.11602200)+1 种基金Hunan Innovative Province Construction Special Fund,China(No.2021GK1020)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.
基金supported by the National Natural Science Foundation of China(No.12104047)。
文摘The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.
基金supported by a Grant-in-Aid for Scientific Research of KAKENHI,Japan Society for the Promotion of Science(Grant Nos.23H01373 and 23K26068)support from the Japanese Government MEXT scholarship and the Excellent International Student Scholarship provided by Chiba University。
文摘Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems.
基金Project supported by the National Basic Research Program of China(No.2012CB720202)the National Natural Science Foundation of China(No.51476005)the 111 Project of China(No.B07009)
文摘Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.
基金sponsored by the National Natural Science Foundation of China(Nos:11772261,11972305)"111"Project of China(No.:B17037).
文摘Rotor noise is one of the most important reasons for restricting helicopter development;hence,the optimization design of rotor blade considering aeroacoustic and aerodynamic performance at the same time has always been the focus of research attention.For complex rotor design problems with a large number of design variables,the efficiency of the traditional Kriging model needs to be improved.Thus,Hierarchical Kriging(HK)model is employed in this study for rotor optimization design.By using the validated RANS solver and acoustic method based on the FWHpds equation,an efficient aerodynamic/aeroacoustic optimization method for high-dimensional problem of rotors in hover based on HK model is developed.By using present HK model and new infill-sampling criteria,the number of design variables is increased from less than 20-53.Results of two analytical function test cases show that the HK model is efficient and accurate in calculation.Subsequently,the helicopter rotor blade is optimally designed for aerodynamic/aeroacoustic performance in hover based on the HK model with high dimensional design variables.The objective function is adopted to improve the rotational noise characteristics by reducing the absolute peak of the acoustic pressure.In addition,the constraints of thrust,hover efficiency,solidity,and airfoils thickness are strictly satisfied.Optimization results show that the Kriging model finds the objective of reducing the noise by 2.87 dB after 248 iterations while the HK model does it only after 164 iterations.The optimization efficiency of the HK model is significantly higher than that of the traditional Kriging model.In the case analyzed,the HK model saves 35%of the time used by the Kriging model.
文摘It is of great significance to develop a high-efficiency and low-noise propeller optimization method for new-generation propeller aircraft design.Coupled with free form deformation method,dynamic mesh interpolation technology,optimization algorithm,surrogate model,aerodynamic calculation and aeroacoustic prediction model module,the integrated aerodynamic and aeroacoustic design method of propeller is built.The optimization design for the six-blade propeller is carried out.The non-reduction in efficiency,thrust coefficient and the minimum of aerodynamic noise is treated as the optimization design objective.The spatial vorticity distribution of the propeller before and after the design is also analyzed by using unsteady computational fluid dynamics method.The results show that the optimized propeller can effectively reduce the aerodynamic noise level.The maximum total sound pressure level can be reduced by 5 dB without reducing its aerodynamic performance.The developed method has good application potential in low-noise optimization design of propeller and other rotating machinery.
基金supported in part by National Key R&D Program of China(Grant No.2016YFE0205200)High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)+1 种基金National Natural Science Foundation of China(Grant No.11972179,51475394)China Postdoctoral Science Foundation Grant(Grant No.2019M662201).
文摘The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was analysed in the frame of the Ffowcs Williams-Hawkings(FW-H)acoustic analogy.According to the results,the contact strip,base frame and knuckle are the main aerodynamic noise sources,with vortex shedding,flow separation and recombination around the pantograph being related key physical factors.The aerodynamic noise radiates outwards in the form of spherical waves when the distance of the noise receiving point is farther than 8 m.The sound pressure level(SPL)grows approximately as the 6th power of pantograph operating speed.The aerodynamic noise energy is mainly concentrated in the region of 400-1000 Hz,and the frequency band is wider with crosswind than without crosswind.The peak frequency displays a linear relationships with the operating speed and crosswind velocity,respectively.The aerodynamic and aeroacoustic generation from the knuckle-downstream orientation of the pantograph is superior to those of the knuckle-upstream orientation model.This finding may be used for the optimal design of future pantograph configurations in the presence of crosswind.
基金supported by the National Basic Research Program of China(2009CB724100)
文摘Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.
基金Russian Foundation of Basic Research(No. 04-01-08034, 06-01-00293-a)
文摘The paper presents a finite volume numerical method universally applicable for solving both linear and nonlinear aeroacoustics problems on arbitrary unstructured meshes. It is based on the vertexcentered multi-parameter scheme offering up to the 6th accuracy order achieved on the Cartesian meshes. An adaptive dissipation is added for the numerical treatment of possible discontinuities. The scheme properties are studied on a series of test cases, its efficiency is demonstrated at simulating the noise suppression in resonance-type liners.
基金supported by the National Natural Science Foundation of China (11150110134)the Science Foundation of Aeronautics of China (20101271004)
文摘High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical issues associated with high-order schemes on an adaptively refined mesh, such as stability and accuracy are addressed. Several CAA benchmark problems are used to demonstrate the feasibility and efficiency of the approach.
基金supported by a Grant-in-Aid for Scientific Research of KAKENHI,Japan Society for the Promotion of Science(Grant No.19H00750)J.R.acknowledges financial support from the Japanese Government through a MEXT scholarship.
文摘Owls are widely known for their silent flight,which is attributed to their unique wing morphologies comprising leading-edge(LE)serrations,trailing-edge(TE)fringes,and a velvety surface.The aeroacoustic characteristics of owl-inspired TE fringes have been widely investigated through two-dimensional(2D)modeling,but remain yet poorly studied in association with their three-dimensional(3D)effects.Here,we present a numerical study of the 3D aeroacoustic characteristics of owl-inspired TE fringes in which we combined large-eddy simulations(LES)with the Ffowcs Williams‒Hawkings analogy.We constructed a clean wing model and three wing models with TE fringes that were distributed differently spanwise.The aerodynamic forces and 3D acoustic characteristics reveal that,like the 2D results of our previous studies,the 3D TE fringes enable remarkable sound reduction spatially while having aerodynamic performance comparable to the clean model.Visualizations of the near-field 3D flow structures,vortex dynamics,and flow fluctuations show that TE fringes can robustly alter the 3D flow by breaking 3D TE vortices into small eddies and mitigating 3D flow fluctuations.Particularly,it is verified that TE fringes alter spanwise flows,thus dominating the 3D aeroacoustic characteristics in terms of passive flow control and flow stabilizations,whereas the fringes are inefficient in suppressing the acoustic sources induced by wingtip vortices.Moreover,the TE fringes distributed at midspan have better acoustic performance than those in the vicinity of the wingtip,indicating the importance of a spanwise distribution in enhancing aeroacoustic performance.
基金Supported by the National Natural Science Foundation of China(10902050)the China Postdoctoral Science Foundation Funded Project(20100481138)the Aeronautical Science Foundation of China(20101452017)
文摘Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.
文摘Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Funding of Jiangsu Innovation Program for Graduate Education (KYLX_0296)the Fundamental Research Funds for the Central Universities
文摘Delayed detached eddy simulation(DDES)is performed to investigate an open cavity at Ma0.85.Clean cavity and cavity with leading-edge saw tooth spoiler and flattop spoiler,are modeled.The results obtained from clean cavity prediction are compared with experimental sound pressure level(SPL)data from QinetiQ,UK.DDES results agree well with the experimental data.Furthermore,comparisons are made with the predicted SPL between the three configurations to find out the effect of different passive control methods.Both the spoilers can suppress the over-all SPL up to 8dB.The main focuses of this investigation are to exam the DDES method on cavity aeroacoustic analysis and test the noise suppression effect by saw tooth spoiler and flattop spoiler.
基金supported by the National Natural Science Foundation of China(Grant Nos.11404405,91216201,51205403,and 11302253)
文摘We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction.
文摘On the purpose of accurate data acquisition for the aeroacoustic testing mostly in open jet test section of aeroacoustic wind tunnel, the large scale anechoic chamber is specifically designed to build the low background noise environment. A newly acoustic test section is presented in this paper, of which the contour is similar as the closed test section, and the wall is fabricated by the fiber fabric, both the characteristics of closed and open jet test section of conventional wind tunnel are combined in it. By thoroughly researching on the acoustics and aerodynamics of this acoustically transparent test section, significant progress in reducing the background noises in test section and improving the ratio of energy of the wind tunnel and some other aspects have been achieved. Acoustically transparent test section behaves better in acoustics and aerodynamics than conventional acoustic test section because of their high definition in detecting the sound sources and great performance in transmitting sounds.
文摘In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.
基金the Shanghai Educational Sciences Research Program(No.C2021016)。
文摘The proposed mass model of vocal fold vibration holds a significant importance in the auxiliary diagnosis and treatment of human vocal fold disorders.Mathematical models are proposed in aerodynamics and acoustics to simulate vocal fold vibration during phonation.This has always been a hot topic in pathological linguistics research.Over the past few decades,researchers have designed various types of mass models of vocal fold vibration based on experiments.These models differ in principles,computational complexity,and degrees of freedom.Therefore,we classify and describe the mass models according to modeling methods.We summarize the research status and characteristics of different models,and based on this,we look forward to future research directions for vocal fold mass models.
基金National Natural Science Foundation of China under grant Nos.11872230,91952302 and 92052203National Science and Technology Major Project(J2019-II-0006-0026).
文摘A hybrid noise computation method is presented in this paper.Large-eddy simulation with wall-model equation is proposed to compute the flow field.With a stress-balanced wall-model equation,the near-wall computation cost of large eddy simulation was effectively reduced.The instantaneous flow variables obtained by the large-eddy simulation were used to compute the noise source terms of the Ffowcs Williams-Hawkings equation.The present method was investigated with two test cases:a single cylinder at Re=10,000 and a rod-airfoil at Re=480,000.The flow quantities and aeroacoustic characteristics were compared with the reference data.The mean velocity profiles and spectra of the flow fluctuations were consistent with data from the literature.When compared with the reference data,the noise computation error was less than 3 dB.The computation results demonstrate the present wall-modeled large eddy simulation is efficient for the noise computation of complex vortex shedding flows.
文摘In this paper, the research work on aeroacoustics in turbomachinery done in the Thermoturbomachinery institute, Department of Power Machinery Engineering, Shanghai Jiao Tong University, for the past 15 years is summarized. It includes: aeroacoustic similarity law and correction ofnon--similarity) mechanism of acoustic control of separated flow, aerodynamic and aeroacoustic comprehensive optimum calculation, and the influence of inlet turbulence and inlet distortion.