期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于人工电场算法优化的大型灌区径流预测模型研究 被引量:3
1
作者 王肖鑫 岑威钧 +1 位作者 李昭辉 吴光华 《水资源与水工程学报》 CSCD 北大核心 2022年第4期79-84,共6页
针对水文预报中径流预测数据序列具有非线性和非平稳性等特点,将一种新型智能优化算法——人工电场算法AEFA与LSTM神经网络结合进行参数优化,建立AEFA-LSTM预测模型,并以赵口大型灌区涡河玄武水文站实测年径流量作为样本数据进行网络优... 针对水文预报中径流预测数据序列具有非线性和非平稳性等特点,将一种新型智能优化算法——人工电场算法AEFA与LSTM神经网络结合进行参数优化,建立AEFA-LSTM预测模型,并以赵口大型灌区涡河玄武水文站实测年径流量作为样本数据进行网络优化训练和预测分析,同时与传统优化算法(遗传算法GA和粒子群算法PSO)建立的GA-LSTM和PSO-LSTM预测模型进行对比。结果表明:AEFA-LSTM模型预测值的平均相对误差相较于GA-LSTM模型和PSO-LSTM模型分别降低了7.59%和5.22%,且平均绝对误差MAE、均方误差MSE、均方根误差RMSE均为3种模型中最小,说明所建立的AEFA-LSTM模型可以更高精度地预测径流量,为水文预报提供一种新型高精度径流预测方法。 展开更多
关键词 径流预测 人工电场算法 aefa-LSTM模型 参数优化 灌区
在线阅读 下载PDF
Elitist-opposition-based artificial electric field algorithm for higher-order neural network optimization and financial time series forecasting
2
作者 Sarat Chandra Nayak Satchidananda Dehuri Sung-Bae Cho 《Financial Innovation》 2024年第1期4115-4157,共43页
This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the... This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the AEFA towards global optima by retaining the fine-tuned solutions obtained thus far,and opposition-based learning helps enhance its exploration ability.The new version of the AEFA,called elitist opposition leaning-based AEFA(EOAEFA),retains the properties of the basic AEFA while taking advantage of both elitism and opposition-based learning.Hence,the improved version attempts to reach optimum solutions by enabling the diversification of solutions with guaranteed convergence.Higher-order neural networks(HONNs)have single-layer adjustable parameters,fast learning,a robust fault tolerance,and good approximation ability compared with multilayer neural networks.They consider a higher order of input signals,increased the dimensionality of inputs through functional expansion and could thus discriminate between them.However,determining the number of expansion units in HONNs along with their associated parameters(i.e.,weight and threshold)is a bottleneck in the design of such networks.Here,we used EOAEFA to design two HONNs,namely,a pi-sigma neural network and a functional link artificial neural network,called EOAEFA-PSNN and EOAEFA-FLN,respectively,in a fully automated manner.The proposed models were evaluated on financial time-series datasets,focusing on predicting four closing prices,four exchange rates,and three energy prices.Experiments,comparative studies,and statistical tests were conducted to establish the efficacy of the proposed approach. 展开更多
关键词 aefa ELITISM Opposition-based learning Improved aefa HONN PSNN FLANN Financial forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部