One of the most promising vector control strategies for controlling dengue fever is the stable introduction of the obligate intracellular Wolbachia bacteria strain into Aedes aegypti mosquitoes. This method reduces th...One of the most promising vector control strategies for controlling dengue fever is the stable introduction of the obligate intracellular Wolbachia bacteria strain into Aedes aegypti mosquitoes. This method reduces the mosquito’s ability to transmit dengue through reproductive strategies associated with Wolbachia infection, such as parthenogenesis, male elimination or feminization, sex ratio distortions and cytoplasmic incompatibility. Expert knowledge and a risk assessment framework were used to identify the risks associated with the release of Wolbachia-bearing mosquitoes. Then, consultations with individual participants were organized and a Bayesian network (BN) was developed to capture the relationship between the hazards as well as the likelihood of these adverse events occurring. Finally, risk was calculated from the probability and consequence estimates obtained from our Burkina Faso participants, using a questionnaire based on the identified risks. Our “Cause More Harm” study yielded 46.15% negligible risk, 44.23% very low risk and 9.62% low risk. The “socio-cultural change” parameter had the greatest influence, with the perception that the dissemination project would be poorly received by the local population. This parameter alone accounted for 80% of the most significant risks. This explains the fact that hazard RA 49 “negative messages in social media” is ranked as the highest individual risk (although the risk is low) with a calculated risk of 0.261. The risk assessment was designed to integrate the interdependent complexity of hazards likely to affect the dissemination of technology in the environment. It represents an important implementation phase in the success of this innovative research, introducing a new technology to combat the transmission of dengue fever.展开更多
Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases...Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases.Ensemble models were developed to assess the impacts of climate,vegetation,and human activity on Ae.albopictus.The optimal ensemble model was then used to identify the distribution of suitable areas for Ae.albopictus.Results:After removing duplicate sites and retaining only one location per 100 m×100 m grid,189 Ae.albopictus breeding sites were identified.The optimal ensemble model revealed that Ae.albopictus exhibited higher breeding suitability in Shanghai under specific conditions:a normalized difference vegetation index of 0.1 to 0.6,maximum precipitation in the warmest month ranging from 400 mm to 470 mm,maximum temperature in the warmest month between 30.0℃and 31.0℃,and proximity to waterways within 0.5 km.The most suitable habitats for Ae.albopictus were primarily concentrated in Shanghai’s central urban areas and scattered across the inner suburban districts.Conclusions:The high-risk areas of Ae.albopictus are widely distributed throughout the central urban area and scattered across the inner suburban district of Shanghai,creating conditions conducive to the outbreak of dengue fever.It is essential to enhance targeted control measures for Ae.albopictus in the identified risk areas.展开更多
In Burkina Faso, recent dengue outbreaks were exacerbated by Aedes aegypti mosquitoes, which have developed resistance to conventional insecticides. This study investigates the potential of Metarhizium pingshaense Met...In Burkina Faso, recent dengue outbreaks were exacerbated by Aedes aegypti mosquitoes, which have developed resistance to conventional insecticides. This study investigates the potential of Metarhizium pingshaense Met_S26, a fungus from Burkina Faso, for controlling both endophilic and exophilic Aedes mosquitoes. Traditional interventions are less effective against mosquitoes resting outdoors, and the ability of the fungus to be sexually transmitted could enhance its efficacy. Aedes mosquitoes were reared and exposed to various concentrations of Metarhizium pingshaense to assess its virulence. The fungus showed significant efficacy, with lethal times (LT80) ranging from 8.67 to 11.83 days depending on the concentration. Furthermore, bioassays demonstrated effective sexual auto-dissemination, with substantial transmission of fungal spores between infected and uninfected mosquitoes, leading to lower survival rates in uninfected mates. This study highlights Metarhizium pingshaense Met_S26 as a promising tool for controlling both indoor and outdoor Aedes populations, complementing existing vector control strategies such as the Sterile Insect Technique (SIT) and Wolbachia-based approaches. Future research should explore integrating this fungus with other control methods for a comprehensive vector management strategy.展开更多
Zika virus(ZIKV)is a mosquito-borne virus belonging to the genus Orthoflavivirus,and the family Flaviviridae.It commonly presents with febrile-like symptoms,neurological issues,and pregnancy complications in humans.Cu...Zika virus(ZIKV)is a mosquito-borne virus belonging to the genus Orthoflavivirus,and the family Flaviviridae.It commonly presents with febrile-like symptoms,neurological issues,and pregnancy complications in humans.Currently,there is no commercial vaccine or specific treatment available to prevent ZIKV infection.Therefore,controlling the epidemic's spread relies on preventing mosquitoes from transmitting the virus.Although various studies have explored the transmission of ZIKV between mosquitoes and vertebrate hosts,comprehensive research on potential mosquito-to-mosquito transmission of ZIKV remains limited.In this study,we conducted systematic laboratory investigations to assess the ability of ZIKV to spread among mosquitoes,and to evaluate the impact of ZIKV infection on mosquito development.Our findings revealed that ZIKV can be transmitted between Aedes aegypti mosquitoes both vertically and horizontally,through oviposition and contact between mosquitoes of the same or opposite sex.Additionally,we observed that ZIKV infection resulted in a reduction in the number of mosquito eggs but an increase in their size.The widespread distribution of ZIKV in infected mosquitoes and the altered levels of hormone related genes following viral infection were noted,which may contribute to viral transmission among mosquitoes and affect mosquito development.This research provides systematic experimental evidence of ZIKV transmission among mosquitoes,which is crucial for developing novel strategies to disrupt the spread of orthoflaviviruses and other mosquitoborne pathogens.展开更多
Objective:To determine the current insecticide resistance status of Aedes(Ae.)aegypti and Ae.albopictus to four insecticides,namely 0.05%deltamethrin,0.75%permethrin,5%malathion and 0.25%pirimiphos-methyl using the Wo...Objective:To determine the current insecticide resistance status of Aedes(Ae.)aegypti and Ae.albopictus to four insecticides,namely 0.05%deltamethrin,0.75%permethrin,5%malathion and 0.25%pirimiphos-methyl using the World Health Organisation(WHO)susceptibility test kit.Methods:Adult bioassays were carried out using the standard protocol of the World Health Organisation.All F1 generation urban and suburban field strains of Ae.aegypti and Ae.albopictus were tested against pyrethroid and organophosphate insecticides,including the presence of piperonyl butoxide(PBO)in four replicates of 25 non-blood-fed female mosquitoes ranging from 3 to 5 days old.The Vector Control Research Unit(VCRU)laboratory strain served as a reference strain.Results:In this study,0.05%deltamethrin demonstrated a lower value of knockdown time when 50%of the mosquito population died(KT50)and knockdown time when 95%of the mosquito population died(KT95),which is significantly more effective compared to 0.75%permethrin against adult female Ae.aegypti(urban and suburban)and Ae.albopictus(urban and suburban)(ANOVA,P<0.01).Meanwhile,5%malathion was a more effective insecticide,amounting to the shorter KT50 and KT95 compared to 0.25%pirimiphos-methyl against Ae.aegypti(urban and suburban)and Ae.albopictus(urban and suburban).Ae.aegypti urban and Ae.aegypti suburban performed a higher resistance ratio(RR)towards both 0.05%deltamethrin and 0.75%permethrin due to the wide use of permethrin in dengue vector control programs in Malaysia.However,Ae.albopictus urban and suburban have lower resistance than Ae.aegypti urban and suburban towards 0.05%deltamethrin and 0.75%permethrin at 24 hours post-treatment.The addition of PBO with these insecticides successfully reduced knockdown time(KT50 and KT95)values of most of the Ae.aegypti and Ae.albopictus field strains except PBO+0.75%permethrin against Ae.aegypti suburban.Conclusions:The addition of PBO to insecticides has significantly reduced the knockdown time(KT50 and KT95)values on most of Ae.aegypti and Ae.albopictus urban strain except PBO+5%malathion against Ae.albopictus urban strain and PBO+0.75%permethrin against Ae.albopictus suburban strain in comparison to exposure to insecticides without PBO.Ae.aegypti showed a higher resistance ratio of 50(RR50)when compared with the VCRU laboratory reference strain(susceptible strain)at the exposure to the deltamethrin,including with pre-exposure to PBO.This study found that the addition of PBO with organophosphates(5%malathion and 0.25%pirimiphos-methyl)was significantly more effective than pyrethroids against Ae.aegypti and Ae.albopictus(urban and suburban)due to their high mortality rate at 24 hours.It can be concluded that the usage of PBO can help reduce resistance alteration in Aedes mosquitoes.展开更多
Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vecto...Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vectors in Africa. For vector control, insecticides are on the front line, unfortunately, reported resistance jeopardizes the effectiveness of this strategy. The objective of this review was to determine the geographical distribution and insecticide resistance mechanisms of Ae. aegypti and Ae. Albopictus in Africa. Methods: A systematic review of the literature in scientific databases (PubMed, Google Scholar, ScienceDirect, Hinari) allowed us to identify relevant articles on the geographical distribution of Aedes aegypti, Aedes albopictus and arboviral diseases. On the other hand, studies related to insecticides used in vector control against Aedes, associated resistances and their molecular and metabolic mechanisms. Results: A total of 94 studies met the inclusion criteria for this search. Aedes aegypti is reported in most of Africa, and Aedes albopictus in part. There is a re-emergence and outbreak of Arbovirus epidemics in West and Central Africa. The insecticides used were organochlorines, carbamates, organophosphates and pyrethroids. In Aedes, target site insensitivity and metabolic resistance would be the 2 main mechanisms of resistance to these insecticides. Interpretation & Conclusion: Resistance has been recorded in all four major classes of insecticides recommended by WHO for vector control and eradication. New vector control methods such as the use of plant extracts with larvicidal and adulticidal activities, advanced modern biotechnology techniques, and nanobiotechnology need to be developed.展开更多
The effectiveness of current control measures against Aedes mosquitoes remains low, resulting in persistent epidemics in urban areas. The emergence of resistant mosquito populations to chemical insecticides highlights...The effectiveness of current control measures against Aedes mosquitoes remains low, resulting in persistent epidemics in urban areas. The emergence of resistant mosquito populations to chemical insecticides highlights the need for novel, environmentally friendly, cost-effective control strategies. This study explored the potential of environmental bacterial isolates to biocontrol wild Aedes larvae. Initially, we collected bacterial samples from infectious masses of Aedes fluviatilis larvae. The isolated bacteria were identified using biochemical, enzymatic, and molecular methods, including 16S rRNA sequencing and MALDI-TOF. Previously, Aeromonas hydrophila and Bacillus thuringiensis isolated from these infectious masses showed limited Aedes larval inhibition. Consequently, we screened additional environmental isolates from the bacteriotheque. Six isolates previously identified were tested: Chromobacterium violaceum, Enterobacter cloacae, Bacillus cereus, Bacillus sphaericus, and two strains of Bacillus thuringiensis israelensis. Among these strains, B. thuringiensis and C. violaceum exhibited significant inhibitory activities against wild Aedes larvae. Bacillus thuringiensis cultures grown under daylight conditions showed a slight ability to inhibit Aedes larvae. The potential of B. thuringiensis and C. violaceum strains studied, along with optimized culture growth conditions, will be further investigated to develop bioinsecticide products to provide safer and more sustainable alternatives for controlling larvae of Aedes mosquitoes.展开更多
Objective:To evaluate the larvicidal efficacy of crude and fractionated extracts of Dracaena loureiri endocarp against Aedes aegypti,Aedes albopictus,Culex quinquefasciatus,and Anopheles minimus mosquitos.Methods:Larv...Objective:To evaluate the larvicidal efficacy of crude and fractionated extracts of Dracaena loureiri endocarp against Aedes aegypti,Aedes albopictus,Culex quinquefasciatus,and Anopheles minimus mosquitos.Methods:Larvicidal activity was tested according to World Health Organization standard protocol.The third-stage larvae of each mosquito species were exposed to various concentrations of Dracaena loureiri crude extract and six groups of Dracaena loureiri fractionated extracts(RC-DT 009-014).Larval mortality rates were observed after 24 h and48 h of exposure.Then,a computerized probit analysis of the mortality data was performed to determine lethal concentration 50(LC_(50))and lethal concentration 90 values.Results:Anopheles minimus larvae(24-h LC_(50)77.88 mg/L)had the highest susceptibility to crude extract,whereas others(Aedes aegypti,24-h LC_(50)224.73 mg/L;Aedes albopictus,24-h LC_(50)261.75 mg/L;and Culex quinquefasciatus,24-h LC_(50)282.86 mg/L)were significantly less susceptible.The most effective groups of fractionated extracts were RC-DT 012 and RC-DT 013.The mosquito species most susceptible to fractionated extracts was Culex quinquefasciatus,with 24-h LC_(50)values of 0.66 and 0.94 mg/L for RC-DT 012 and RC-DT 013,respectively.Conclusions:The larvicidal activity of fractionated extracts is more effective than that of crude extract against all tested mosquito species.For the most effective alternative larvicide,purification and a phytochemical constituent analysis must be performed.展开更多
Mosquitoes belonging to the genus Aedes pose a significant threat to human health on a global scenario due to their role in transmission of dengue,chikungunya,zika,and yellow fever.In absence of specific medications a...Mosquitoes belonging to the genus Aedes pose a significant threat to human health on a global scenario due to their role in transmission of dengue,chikungunya,zika,and yellow fever.In absence of specific medications and vaccines against these diseases,disease prevention relies on vector control.However,in today’s world,vector control is facing major challenges due to the onset of insecticide resistance in mosquitoes.There are four main mechanisms of insecticide resistance,namely,behavioral resistance,reduced penetration/cuticular resistance,metabolic detoxification,and target site resistance;however,the latter two mechanisms have been studied widely in Aedes mosquitoes.Insecticide resistance in Aedes mosquitoes is widespread throughout the world.This review compiles the degree of insecticide resistance/susceptibility prevailing among different field populations of Aedes mosquitoes worldwide.In addition,the review has detailed the mechanisms providing the resistance phenomenon observed in nature in Aedes mosquitoes.展开更多
Objective: To evaluate the efficacy of symbiotic bacteria, Xenorhabdus indica, Xenorhabdus stockiae, Photorhabdus luminescens subsp. akhurstii and Photorhabdus luminescens subsp. hainanensis as a larvicide against Aed...Objective: To evaluate the efficacy of symbiotic bacteria, Xenorhabdus indica, Xenorhabdus stockiae, Photorhabdus luminescens subsp. akhurstii and Photorhabdus luminescens subsp. hainanensis as a larvicide against Aedes aegypti and Aedes albopictus. Methods: Larvae(L3-L4) of Aedes aegypti and Aedes albopictus were given 2 m L of a suspension 107-108 CFU/m L of each symbiotic bacterium. Distilled water and Escherichia coli ATCC襅25922 were used as the control. The mortality rate of the larval mosquitoes was observed at 24, 48, 72 and 96 h. The experiment was performed in triplicates. Results: The larvae of both Aedes species started to die at 24 h exposure. Aedes aegypti showed the highest mortality rate(87%-99%), 96 h after exposure to Xenorhabdus stockiae(b NBP22.2_TH). The mortality rate of Aedes albopictus was between 82% and 96% at 96 h after exposure to Xenorhabdus indica(b KK26.2_TH). Low effectiveness of distilled water and Escherichia coli ATCC襅25922 were observed in both Aedes larvae, with a mortality rate of 2% to 12%. Conclusions: The study confirms the oral toxicity of Xenorhabdus and Photorhabdus bacteria against Aedes spp. Xenorhabdus stockiae and Xenorhabdus indica may be an alternative agent for control Aedes spp. This is basic information for further study on the mechanism of action on Aedes larvae or application to control mosquito larvae in the community.展开更多
Objective:To determine the suitable ecological habitats of Aedes(Ae.)aegypti and Ae.albopictus in Iran due to climate change by the 2070s.Methods:All data relating to the spatial distribution of Ae.aegypti and Ae.albo...Objective:To determine the suitable ecological habitats of Aedes(Ae.)aegypti and Ae.albopictus in Iran due to climate change by the 2070s.Methods:All data relating to the spatial distribution of Ae.aegypti and Ae.albopictus worldwide,which indicated the geographical coordinates of the collection sites of these mosquitoes,were extracted from online scientific websites and entered into an Excel file.The effect of climatic and environmental variables on these mosquitoes was evaluated using the MaxEnt model in the current and future climatic conditions in the 2030s,2050s,and 2070s.Results:The most suitable areas for the establishment of Ae.aegypti are located in the southern and northern coastal areas of Iran,based on the model outputs.The modelling result for suitable ecological niches of Ae.albopictus shows that in the current climatic conditions,the southern half of Iran from east to west,and parts of the northern coasts are prone to the presence of this species.In the future,some regions,such as Gilan and Golestan provinces,will have more potential to exist/establish Ae.albopictus.Also,according to the different climate change scenarios,suitable habitats for this species will gradually change to the northwest and west of the country.The temperature of the wettest season of the year(Bio8)and average annual temperature(Bio1)were the most effective factors in predicting the model for Ae.aegypti and Ae.albopictus,respectively.Conclusions:It is required to focus on entomological studies using different collection methods in the vulnerable areas of Iran.The future modelling results can also be used for long-term planning to prevent the entry and establishment of these invasive Aedes vectors in the country.展开更多
Objective:To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria(E.coronaria) and Caeslpinia pulckerrima(C.pulcherrima) against Culex quinquefasciatus(Cx.quinquefasciatus),A...Objective:To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria(E.coronaria) and Caeslpinia pulckerrima(C.pulcherrima) against Culex quinquefasciatus(Cx.quinquefasciatus),Aedes aegypti(Ae.aegypti) and Anopheles stephensi(An. stephensi).Methods:The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions.The hatch rates were assessed 48 h after treatment.The repellent efficacy was determined against three mosquito species at three concentrations viz.,1.0,2.5 and 5.0 mg/cm under the laboratory conditions. Results:The crude extract of E.coronaria exerted zero hatchability(100%mortality) at 250.200 and 150 ppm for Cx.quinqitefasciatus,Ae.aegypti and An.stephensi,respectively.The crude extract of C.pulchenima exerted zero hatchability(100%mortality) at 375.300 and 225 ppm for Cx.quinquefasciatus,Ae.aegypti and An.Stephensi,respectively.The methanol extract of E. coronaria found to be more repellenct than C.pukherrima extract.A higher concentration of 5.0 mg/cm^2 provided 100%protection up to 150.180 and 210 min against Cx.quinquefasciatus,Ae. aegypti and An.stephensi,respectively.The results clearly showed that repellent activity was dose dependent.Conclusions:From the results it can be concluded the crude extracts of E.coronaria and C.pukherrima are an excellent potential for controlling Cx.quinquefasciatus,Ae.aegypti and An.stephensi mosquitoes.展开更多
Objective:The present study deals with the investigation of larvicidal and ovicidal activities of benzene,hexane,ethyl acetate,methanol and chloroform leaf extract of Eclipta alba(E.alba) against dengue vector,Aedes...Objective:The present study deals with the investigation of larvicidal and ovicidal activities of benzene,hexane,ethyl acetate,methanol and chloroform leaf extract of Eclipta alba(E.alba) against dengue vector,Aedes aegypti(Ae.Aegypti).Methods:Twenty five earlyⅢinstar larvae of Ae.aegypti was exposed to various concentrations(50-300 ppm) and was assayed in the laboratory by using the protocol of WHO 2005;the 24 h LC<sub>50</sub> values of the E.alba leaf extract was determined by Probit analysis.For ovicidal activity,slightly modified method of Su and Mulla was performed.The ovicidal activity was determined against Ae.aegypti to various concentrations ranging from 100-350 ppm under the laboratory conditions.The egg hatch rates were assessed 48 h post treatment.Results:The LC<sub>50</sub> values of benzene,hexane,ethyl acetate,methanol and chloroform extract of E.alba against early third instar larvae of Ae.aegypti were 151.38,165.10, 154.88,127.64 and 146.28 ppm,respectively.Maximum larvicidal activity was observed in the methanol extract followed by chloroform,benzene,ethyl acetate and hexane extract.No mortality was observed in control.Among five solvent tested the methanol extract was found to be most effective for ovicidal activity against Ae.aegypti.The methanol extracts exerted 100%mortality (zero hatchability) at 300 ppm.Conclusions:From the results it can be concluded the crude extract of E.alba was an excellent potential for controlling Ae.aegypti mosquito.展开更多
Objective:To investigate the larvicidal and ovicidal efficacy of different extracts of Andrographis paniculata(A.paniculata) against Culex quinquefasciatus(Cx.quinquefasciatus) Say and Aedes aegypti(Ae.aegypti ...Objective:To investigate the larvicidal and ovicidal efficacy of different extracts of Andrographis paniculata(A.paniculata) against Culex quinquefasciatus(Cx.quinquefasciatus) Say and Aedes aegypti(Ae.aegypti ) L(Diptera:Culicidae).Methods:Larvicidal efficacy of the crude leaf extracts of A.paniculata with five different solvents like benzene,hexane,ethyl acetate, methanol and chloroform was tested against the early third instar larvae of Cx.quinquefasciatus and Ae.aegypti.The ovicidal activity was determined against two mosquito species to various concentrations ranging from 50-300 ppm under the laboratory conditions.Results:The benzene, hexane,ethyl acetate,methanol and chloroform leaf extract of A.paniculata was found to be more effective against Cx.quinquefasciatus than Ae.aegypti.The LC<sub>50</sub> values were 112.19,137.48, 118.67,102.05,91.20 ppm and 119.58,146.34,124.24,110.12,99.54 ppm respectively.Among five tested solvent,methanol and ethyl acetate crude extract was found to be most effective for ovicidal activity against two mosquito species.The extract of methanol and ethyl acetate exerted 100%mortality at 200 ppm against Cx.quinquefasciatus and at 250 ppm against Ae.aegypti. Conclusions:From the results it can be concluded the crude extract of A.paniculata was a potential for controlling Cx.quinquefasciatus and Ae.aegypti mosquitoes.展开更多
Objective:To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant,Mentha piperita(M.piperita) against the larval and adult stages of Aedes aegypti(Ae.Aegypti...Objective:To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant,Mentha piperita(M.piperita) against the larval and adult stages of Aedes aegypti(Ae.Aegypti).Methods:The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae.aegypti using WHO protocol.The mortality counts were made after 24 and 48 h,and LC_(50) and LC_(90) values were calculated.The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique.The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol.The mosquito bites on both the arms were recorded for 3 min after every 15 min.The experiment continued for 3 h and the percent protection was calculated.Results:The essential oil extracted from M.piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC_(50) and LC_(90) value of 111.9 and 295.18 ppm,respectively after 24 h of exposure.The toxicity of the oil increased 11.8%when the larvae were exposed to the oil for 48 h.The remarkable repellent properties of M.piperita essential oil were established against adults Ae.aegypti.The application of oil resulted in 100%protection till 150 min.After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm.Conclusions:The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide,oviposilion deterrent and ovicidal agent.The isolation of active ingredient from the oil could help in formulating strategies for mosquito control.展开更多
Objective:To isolate the entomopathogenic fungus Metarhixium anisopliae(M.anisopliae) in the local environment,and evaluate its efficacy against the suspected dengue vector Aedes albopictus in Pakistan.Methods:Accordi...Objective:To isolate the entomopathogenic fungus Metarhixium anisopliae(M.anisopliae) in the local environment,and evaluate its efficacy against the suspected dengue vector Aedes albopictus in Pakistan.Methods:According to the standard procedure,M.anisopliae was isolated from the dead mosquitoes which were collected from the field or dead after the collection.Bioassay was performed to determine its efficacy.Results:The results indicated that M.anisopliae had larvicidal effect with LC,value 1.09×10~5 and LC_(50) value 1.90×10^(13) while it took 45.41 h to kill 50% of tested population.Conclusions:Taking long time to kill 50%population when compare with the synthetic insecticides,is the only drawback for the use of entomopathogenic fungus but these bio-pesticides are safe for the use.展开更多
Objective: To investigate the efficacies of 12 essential oil(EO) formulations from three Zingiberaceae plants(Alpinia galanga, Curcuma zedoaria, and Zingiber cassumunar) individually and in combination with an augment...Objective: To investigate the efficacies of 12 essential oil(EO) formulations from three Zingiberaceae plants(Alpinia galanga, Curcuma zedoaria, and Zingiber cassumunar) individually and in combination with an augmenting Eucalyptus globulus(E. globulus) EO against females of Aedes albopictus(Ae. albopictus) and Anopheles minimus(An. minimus). Methods: These formulations were evaluated for their ovicidal, oviposition deterrent and adulticidal activities against Ae. albopictus and An. minimus by a topical method, a double-choice method and a WHO susceptibility test, respectively. Results: It was found that all formulations of Zingiberaceae plants EOs augmented with E. globulus EO were more effective in oviposition deterrent, ovicidal, and adulticidal activities against the two mosquito species than all of the formulations used without E. globulus EO. Their oviposition deterrent, ovicidal and adulticidal activities were equivalent to those of 10% w/v cypermethrin. In contrast, 70% v/v ethyl alcohol as a control alone was not effective at all. The highest synergistic effect in effective repellency against Ae. albopictus was achieved by 5% Alpinia galanga EO + 5% E. globulus EO and against An. minimus was 5% Zingiber cassumunar EO + 5% E. globulus EO. Moreover, the highest synergistic effects in ovicidal activities against Ae. albopictus and An. minimus were achieved by 10% Zingiber cassumunar EO + 10% E. globulus EO and 5% Curcuma zedoaria EO + 5% E. globulus EO, respectively. For the adulticidal activities, the highest synergistic effect against two mosquitoes was achieved by 5% Curcuma zedoaria EO + 5% E. globulus EO. Conclusions: These results suggest that Zingiberaceae plant EOs augmented with E. globulus EO have a high potential to be developed into oviposition deterrent, ovicidal, and adulticidal agents for controlling populations of Ae. albopictus and An. minimus.展开更多
文摘One of the most promising vector control strategies for controlling dengue fever is the stable introduction of the obligate intracellular Wolbachia bacteria strain into Aedes aegypti mosquitoes. This method reduces the mosquito’s ability to transmit dengue through reproductive strategies associated with Wolbachia infection, such as parthenogenesis, male elimination or feminization, sex ratio distortions and cytoplasmic incompatibility. Expert knowledge and a risk assessment framework were used to identify the risks associated with the release of Wolbachia-bearing mosquitoes. Then, consultations with individual participants were organized and a Bayesian network (BN) was developed to capture the relationship between the hazards as well as the likelihood of these adverse events occurring. Finally, risk was calculated from the probability and consequence estimates obtained from our Burkina Faso participants, using a questionnaire based on the identified risks. Our “Cause More Harm” study yielded 46.15% negligible risk, 44.23% very low risk and 9.62% low risk. The “socio-cultural change” parameter had the greatest influence, with the perception that the dissemination project would be poorly received by the local population. This parameter alone accounted for 80% of the most significant risks. This explains the fact that hazard RA 49 “negative messages in social media” is ranked as the highest individual risk (although the risk is low) with a calculated risk of 0.261. The risk assessment was designed to integrate the interdependent complexity of hazards likely to affect the dissemination of technology in the environment. It represents an important implementation phase in the success of this innovative research, introducing a new technology to combat the transmission of dengue fever.
基金supported by Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)Key Discipline Project(No.GWVI-11.1-12).
文摘Objective:To predict the distribution of dengue vector Aedes(Ae.)albopictus and identify high-risk areas for dengue fever transmission.Methods:Data on Ae.albopictus occurrences were collected from electronic databases.Ensemble models were developed to assess the impacts of climate,vegetation,and human activity on Ae.albopictus.The optimal ensemble model was then used to identify the distribution of suitable areas for Ae.albopictus.Results:After removing duplicate sites and retaining only one location per 100 m×100 m grid,189 Ae.albopictus breeding sites were identified.The optimal ensemble model revealed that Ae.albopictus exhibited higher breeding suitability in Shanghai under specific conditions:a normalized difference vegetation index of 0.1 to 0.6,maximum precipitation in the warmest month ranging from 400 mm to 470 mm,maximum temperature in the warmest month between 30.0℃and 31.0℃,and proximity to waterways within 0.5 km.The most suitable habitats for Ae.albopictus were primarily concentrated in Shanghai’s central urban areas and scattered across the inner suburban districts.Conclusions:The high-risk areas of Ae.albopictus are widely distributed throughout the central urban area and scattered across the inner suburban district of Shanghai,creating conditions conducive to the outbreak of dengue fever.It is essential to enhance targeted control measures for Ae.albopictus in the identified risk areas.
文摘In Burkina Faso, recent dengue outbreaks were exacerbated by Aedes aegypti mosquitoes, which have developed resistance to conventional insecticides. This study investigates the potential of Metarhizium pingshaense Met_S26, a fungus from Burkina Faso, for controlling both endophilic and exophilic Aedes mosquitoes. Traditional interventions are less effective against mosquitoes resting outdoors, and the ability of the fungus to be sexually transmitted could enhance its efficacy. Aedes mosquitoes were reared and exposed to various concentrations of Metarhizium pingshaense to assess its virulence. The fungus showed significant efficacy, with lethal times (LT80) ranging from 8.67 to 11.83 days depending on the concentration. Furthermore, bioassays demonstrated effective sexual auto-dissemination, with substantial transmission of fungal spores between infected and uninfected mosquitoes, leading to lower survival rates in uninfected mates. This study highlights Metarhizium pingshaense Met_S26 as a promising tool for controlling both indoor and outdoor Aedes populations, complementing existing vector control strategies such as the Sterile Insect Technique (SIT) and Wolbachia-based approaches. Future research should explore integrating this fungus with other control methods for a comprehensive vector management strategy.
基金supported by National Key Research and Development Program of China,China(2024YFD1800102,2022YFD1800105 and 2022YFD1801500)National Natural Science Foundation of China,China(32372993 and 32030107)Fundamental Research Funds for the Central Universities,China(2662023PY005).
文摘Zika virus(ZIKV)is a mosquito-borne virus belonging to the genus Orthoflavivirus,and the family Flaviviridae.It commonly presents with febrile-like symptoms,neurological issues,and pregnancy complications in humans.Currently,there is no commercial vaccine or specific treatment available to prevent ZIKV infection.Therefore,controlling the epidemic's spread relies on preventing mosquitoes from transmitting the virus.Although various studies have explored the transmission of ZIKV between mosquitoes and vertebrate hosts,comprehensive research on potential mosquito-to-mosquito transmission of ZIKV remains limited.In this study,we conducted systematic laboratory investigations to assess the ability of ZIKV to spread among mosquitoes,and to evaluate the impact of ZIKV infection on mosquito development.Our findings revealed that ZIKV can be transmitted between Aedes aegypti mosquitoes both vertically and horizontally,through oviposition and contact between mosquitoes of the same or opposite sex.Additionally,we observed that ZIKV infection resulted in a reduction in the number of mosquito eggs but an increase in their size.The widespread distribution of ZIKV in infected mosquitoes and the altered levels of hormone related genes following viral infection were noted,which may contribute to viral transmission among mosquitoes and affect mosquito development.This research provides systematic experimental evidence of ZIKV transmission among mosquitoes,which is crucial for developing novel strategies to disrupt the spread of orthoflaviviruses and other mosquitoborne pathogens.
基金the Fundamental Research Grant Scheme,Ministry of Higher Education Malaysia(FRGS/1/2023/STG03/USM/02/4).
文摘Objective:To determine the current insecticide resistance status of Aedes(Ae.)aegypti and Ae.albopictus to four insecticides,namely 0.05%deltamethrin,0.75%permethrin,5%malathion and 0.25%pirimiphos-methyl using the World Health Organisation(WHO)susceptibility test kit.Methods:Adult bioassays were carried out using the standard protocol of the World Health Organisation.All F1 generation urban and suburban field strains of Ae.aegypti and Ae.albopictus were tested against pyrethroid and organophosphate insecticides,including the presence of piperonyl butoxide(PBO)in four replicates of 25 non-blood-fed female mosquitoes ranging from 3 to 5 days old.The Vector Control Research Unit(VCRU)laboratory strain served as a reference strain.Results:In this study,0.05%deltamethrin demonstrated a lower value of knockdown time when 50%of the mosquito population died(KT50)and knockdown time when 95%of the mosquito population died(KT95),which is significantly more effective compared to 0.75%permethrin against adult female Ae.aegypti(urban and suburban)and Ae.albopictus(urban and suburban)(ANOVA,P<0.01).Meanwhile,5%malathion was a more effective insecticide,amounting to the shorter KT50 and KT95 compared to 0.25%pirimiphos-methyl against Ae.aegypti(urban and suburban)and Ae.albopictus(urban and suburban).Ae.aegypti urban and Ae.aegypti suburban performed a higher resistance ratio(RR)towards both 0.05%deltamethrin and 0.75%permethrin due to the wide use of permethrin in dengue vector control programs in Malaysia.However,Ae.albopictus urban and suburban have lower resistance than Ae.aegypti urban and suburban towards 0.05%deltamethrin and 0.75%permethrin at 24 hours post-treatment.The addition of PBO with these insecticides successfully reduced knockdown time(KT50 and KT95)values of most of the Ae.aegypti and Ae.albopictus field strains except PBO+0.75%permethrin against Ae.aegypti suburban.Conclusions:The addition of PBO to insecticides has significantly reduced the knockdown time(KT50 and KT95)values on most of Ae.aegypti and Ae.albopictus urban strain except PBO+5%malathion against Ae.albopictus urban strain and PBO+0.75%permethrin against Ae.albopictus suburban strain in comparison to exposure to insecticides without PBO.Ae.aegypti showed a higher resistance ratio of 50(RR50)when compared with the VCRU laboratory reference strain(susceptible strain)at the exposure to the deltamethrin,including with pre-exposure to PBO.This study found that the addition of PBO with organophosphates(5%malathion and 0.25%pirimiphos-methyl)was significantly more effective than pyrethroids against Ae.aegypti and Ae.albopictus(urban and suburban)due to their high mortality rate at 24 hours.It can be concluded that the usage of PBO can help reduce resistance alteration in Aedes mosquitoes.
文摘Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vectors in Africa. For vector control, insecticides are on the front line, unfortunately, reported resistance jeopardizes the effectiveness of this strategy. The objective of this review was to determine the geographical distribution and insecticide resistance mechanisms of Ae. aegypti and Ae. Albopictus in Africa. Methods: A systematic review of the literature in scientific databases (PubMed, Google Scholar, ScienceDirect, Hinari) allowed us to identify relevant articles on the geographical distribution of Aedes aegypti, Aedes albopictus and arboviral diseases. On the other hand, studies related to insecticides used in vector control against Aedes, associated resistances and their molecular and metabolic mechanisms. Results: A total of 94 studies met the inclusion criteria for this search. Aedes aegypti is reported in most of Africa, and Aedes albopictus in part. There is a re-emergence and outbreak of Arbovirus epidemics in West and Central Africa. The insecticides used were organochlorines, carbamates, organophosphates and pyrethroids. In Aedes, target site insensitivity and metabolic resistance would be the 2 main mechanisms of resistance to these insecticides. Interpretation & Conclusion: Resistance has been recorded in all four major classes of insecticides recommended by WHO for vector control and eradication. New vector control methods such as the use of plant extracts with larvicidal and adulticidal activities, advanced modern biotechnology techniques, and nanobiotechnology need to be developed.
文摘The effectiveness of current control measures against Aedes mosquitoes remains low, resulting in persistent epidemics in urban areas. The emergence of resistant mosquito populations to chemical insecticides highlights the need for novel, environmentally friendly, cost-effective control strategies. This study explored the potential of environmental bacterial isolates to biocontrol wild Aedes larvae. Initially, we collected bacterial samples from infectious masses of Aedes fluviatilis larvae. The isolated bacteria were identified using biochemical, enzymatic, and molecular methods, including 16S rRNA sequencing and MALDI-TOF. Previously, Aeromonas hydrophila and Bacillus thuringiensis isolated from these infectious masses showed limited Aedes larval inhibition. Consequently, we screened additional environmental isolates from the bacteriotheque. Six isolates previously identified were tested: Chromobacterium violaceum, Enterobacter cloacae, Bacillus cereus, Bacillus sphaericus, and two strains of Bacillus thuringiensis israelensis. Among these strains, B. thuringiensis and C. violaceum exhibited significant inhibitory activities against wild Aedes larvae. Bacillus thuringiensis cultures grown under daylight conditions showed a slight ability to inhibit Aedes larvae. The potential of B. thuringiensis and C. violaceum strains studied, along with optimized culture growth conditions, will be further investigated to develop bioinsecticide products to provide safer and more sustainable alternatives for controlling larvae of Aedes mosquitoes.
基金supported by the Naresuan University Research Fund(Reference Number:R2560B057)
文摘Objective:To evaluate the larvicidal efficacy of crude and fractionated extracts of Dracaena loureiri endocarp against Aedes aegypti,Aedes albopictus,Culex quinquefasciatus,and Anopheles minimus mosquitos.Methods:Larvicidal activity was tested according to World Health Organization standard protocol.The third-stage larvae of each mosquito species were exposed to various concentrations of Dracaena loureiri crude extract and six groups of Dracaena loureiri fractionated extracts(RC-DT 009-014).Larval mortality rates were observed after 24 h and48 h of exposure.Then,a computerized probit analysis of the mortality data was performed to determine lethal concentration 50(LC_(50))and lethal concentration 90 values.Results:Anopheles minimus larvae(24-h LC_(50)77.88 mg/L)had the highest susceptibility to crude extract,whereas others(Aedes aegypti,24-h LC_(50)224.73 mg/L;Aedes albopictus,24-h LC_(50)261.75 mg/L;and Culex quinquefasciatus,24-h LC_(50)282.86 mg/L)were significantly less susceptible.The most effective groups of fractionated extracts were RC-DT 012 and RC-DT 013.The mosquito species most susceptible to fractionated extracts was Culex quinquefasciatus,with 24-h LC_(50)values of 0.66 and 0.94 mg/L for RC-DT 012 and RC-DT 013,respectively.Conclusions:The larvicidal activity of fractionated extracts is more effective than that of crude extract against all tested mosquito species.For the most effective alternative larvicide,purification and a phytochemical constituent analysis must be performed.
基金University Grants Commission,New Delhi,India for providing financial assistance throughout this work through Junior Research Fellowship[award letter Sr.No.2121430414,Ref No.21/12/2014(ii)EU-V,Dated 03/06/2015]
文摘Mosquitoes belonging to the genus Aedes pose a significant threat to human health on a global scenario due to their role in transmission of dengue,chikungunya,zika,and yellow fever.In absence of specific medications and vaccines against these diseases,disease prevention relies on vector control.However,in today’s world,vector control is facing major challenges due to the onset of insecticide resistance in mosquitoes.There are four main mechanisms of insecticide resistance,namely,behavioral resistance,reduced penetration/cuticular resistance,metabolic detoxification,and target site resistance;however,the latter two mechanisms have been studied widely in Aedes mosquitoes.Insecticide resistance in Aedes mosquitoes is widespread throughout the world.This review compiles the degree of insecticide resistance/susceptibility prevailing among different field populations of Aedes mosquitoes worldwide.In addition,the review has detailed the mechanisms providing the resistance phenomenon observed in nature in Aedes mosquitoes.
基金supported by Higher Education Research Promotion,The Commission on Higher Education,Thailand(Grant No.R2558A008)Naresuan University(Grant No.R2557B013)
文摘Objective: To evaluate the efficacy of symbiotic bacteria, Xenorhabdus indica, Xenorhabdus stockiae, Photorhabdus luminescens subsp. akhurstii and Photorhabdus luminescens subsp. hainanensis as a larvicide against Aedes aegypti and Aedes albopictus. Methods: Larvae(L3-L4) of Aedes aegypti and Aedes albopictus were given 2 m L of a suspension 107-108 CFU/m L of each symbiotic bacterium. Distilled water and Escherichia coli ATCC襅25922 were used as the control. The mortality rate of the larval mosquitoes was observed at 24, 48, 72 and 96 h. The experiment was performed in triplicates. Results: The larvae of both Aedes species started to die at 24 h exposure. Aedes aegypti showed the highest mortality rate(87%-99%), 96 h after exposure to Xenorhabdus stockiae(b NBP22.2_TH). The mortality rate of Aedes albopictus was between 82% and 96% at 96 h after exposure to Xenorhabdus indica(b KK26.2_TH). Low effectiveness of distilled water and Escherichia coli ATCC襅25922 were observed in both Aedes larvae, with a mortality rate of 2% to 12%. Conclusions: The study confirms the oral toxicity of Xenorhabdus and Photorhabdus bacteria against Aedes spp. Xenorhabdus stockiae and Xenorhabdus indica may be an alternative agent for control Aedes spp. This is basic information for further study on the mechanism of action on Aedes larvae or application to control mosquito larvae in the community.
基金Research Deputy,Tehran University of Medical Sciences,grant No.46857。
文摘Objective:To determine the suitable ecological habitats of Aedes(Ae.)aegypti and Ae.albopictus in Iran due to climate change by the 2070s.Methods:All data relating to the spatial distribution of Ae.aegypti and Ae.albopictus worldwide,which indicated the geographical coordinates of the collection sites of these mosquitoes,were extracted from online scientific websites and entered into an Excel file.The effect of climatic and environmental variables on these mosquitoes was evaluated using the MaxEnt model in the current and future climatic conditions in the 2030s,2050s,and 2070s.Results:The most suitable areas for the establishment of Ae.aegypti are located in the southern and northern coastal areas of Iran,based on the model outputs.The modelling result for suitable ecological niches of Ae.albopictus shows that in the current climatic conditions,the southern half of Iran from east to west,and parts of the northern coasts are prone to the presence of this species.In the future,some regions,such as Gilan and Golestan provinces,will have more potential to exist/establish Ae.albopictus.Also,according to the different climate change scenarios,suitable habitats for this species will gradually change to the northwest and west of the country.The temperature of the wettest season of the year(Bio8)and average annual temperature(Bio1)were the most effective factors in predicting the model for Ae.aegypti and Ae.albopictus,respectively.Conclusions:It is required to focus on entomological studies using different collection methods in the vulnerable areas of Iran.The future modelling results can also be used for long-term planning to prevent the entry and establishment of these invasive Aedes vectors in the country.
文摘Objective:To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria(E.coronaria) and Caeslpinia pulckerrima(C.pulcherrima) against Culex quinquefasciatus(Cx.quinquefasciatus),Aedes aegypti(Ae.aegypti) and Anopheles stephensi(An. stephensi).Methods:The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions.The hatch rates were assessed 48 h after treatment.The repellent efficacy was determined against three mosquito species at three concentrations viz.,1.0,2.5 and 5.0 mg/cm under the laboratory conditions. Results:The crude extract of E.coronaria exerted zero hatchability(100%mortality) at 250.200 and 150 ppm for Cx.quinqitefasciatus,Ae.aegypti and An.stephensi,respectively.The crude extract of C.pulchenima exerted zero hatchability(100%mortality) at 375.300 and 225 ppm for Cx.quinquefasciatus,Ae.aegypti and An.Stephensi,respectively.The methanol extract of E. coronaria found to be more repellenct than C.pukherrima extract.A higher concentration of 5.0 mg/cm^2 provided 100%protection up to 150.180 and 210 min against Cx.quinquefasciatus,Ae. aegypti and An.stephensi,respectively.The results clearly showed that repellent activity was dose dependent.Conclusions:From the results it can be concluded the crude extracts of E.coronaria and C.pukherrima are an excellent potential for controlling Cx.quinquefasciatus,Ae.aegypti and An.stephensi mosquitoes.
基金the Department of Science and Technology(DST),New Delhi,India for providing financial assistance for the present investigation
文摘Objective:The present study deals with the investigation of larvicidal and ovicidal activities of benzene,hexane,ethyl acetate,methanol and chloroform leaf extract of Eclipta alba(E.alba) against dengue vector,Aedes aegypti(Ae.Aegypti).Methods:Twenty five earlyⅢinstar larvae of Ae.aegypti was exposed to various concentrations(50-300 ppm) and was assayed in the laboratory by using the protocol of WHO 2005;the 24 h LC<sub>50</sub> values of the E.alba leaf extract was determined by Probit analysis.For ovicidal activity,slightly modified method of Su and Mulla was performed.The ovicidal activity was determined against Ae.aegypti to various concentrations ranging from 100-350 ppm under the laboratory conditions.The egg hatch rates were assessed 48 h post treatment.Results:The LC<sub>50</sub> values of benzene,hexane,ethyl acetate,methanol and chloroform extract of E.alba against early third instar larvae of Ae.aegypti were 151.38,165.10, 154.88,127.64 and 146.28 ppm,respectively.Maximum larvicidal activity was observed in the methanol extract followed by chloroform,benzene,ethyl acetate and hexane extract.No mortality was observed in control.Among five solvent tested the methanol extract was found to be most effective for ovicidal activity against Ae.aegypti.The methanol extracts exerted 100%mortality (zero hatchability) at 300 ppm.Conclusions:From the results it can be concluded the crude extract of E.alba was an excellent potential for controlling Ae.aegypti mosquito.
基金the Department of Science and Technology(DST)(SERC-Fast Track Young Scientist Project),New Delhi,India for providing financial assistance for the present investigation
文摘Objective:To investigate the larvicidal and ovicidal efficacy of different extracts of Andrographis paniculata(A.paniculata) against Culex quinquefasciatus(Cx.quinquefasciatus) Say and Aedes aegypti(Ae.aegypti ) L(Diptera:Culicidae).Methods:Larvicidal efficacy of the crude leaf extracts of A.paniculata with five different solvents like benzene,hexane,ethyl acetate, methanol and chloroform was tested against the early third instar larvae of Cx.quinquefasciatus and Ae.aegypti.The ovicidal activity was determined against two mosquito species to various concentrations ranging from 50-300 ppm under the laboratory conditions.Results:The benzene, hexane,ethyl acetate,methanol and chloroform leaf extract of A.paniculata was found to be more effective against Cx.quinquefasciatus than Ae.aegypti.The LC<sub>50</sub> values were 112.19,137.48, 118.67,102.05,91.20 ppm and 119.58,146.34,124.24,110.12,99.54 ppm respectively.Among five tested solvent,methanol and ethyl acetate crude extract was found to be most effective for ovicidal activity against two mosquito species.The extract of methanol and ethyl acetate exerted 100%mortality at 200 ppm against Cx.quinquefasciatus and at 250 ppm against Ae.aegypti. Conclusions:From the results it can be concluded the crude extract of A.paniculata was a potential for controlling Cx.quinquefasciatus and Ae.aegypti mosquitoes.
文摘Objective:To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant,Mentha piperita(M.piperita) against the larval and adult stages of Aedes aegypti(Ae.Aegypti).Methods:The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae.aegypti using WHO protocol.The mortality counts were made after 24 and 48 h,and LC_(50) and LC_(90) values were calculated.The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique.The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol.The mosquito bites on both the arms were recorded for 3 min after every 15 min.The experiment continued for 3 h and the percent protection was calculated.Results:The essential oil extracted from M.piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC_(50) and LC_(90) value of 111.9 and 295.18 ppm,respectively after 24 h of exposure.The toxicity of the oil increased 11.8%when the larvae were exposed to the oil for 48 h.The remarkable repellent properties of M.piperita essential oil were established against adults Ae.aegypti.The application of oil resulted in 100%protection till 150 min.After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm.Conclusions:The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide,oviposilion deterrent and ovicidal agent.The isolation of active ingredient from the oil could help in formulating strategies for mosquito control.
文摘Objective:To isolate the entomopathogenic fungus Metarhixium anisopliae(M.anisopliae) in the local environment,and evaluate its efficacy against the suspected dengue vector Aedes albopictus in Pakistan.Methods:According to the standard procedure,M.anisopliae was isolated from the dead mosquitoes which were collected from the field or dead after the collection.Bioassay was performed to determine its efficacy.Results:The results indicated that M.anisopliae had larvicidal effect with LC,value 1.09×10~5 and LC_(50) value 1.90×10^(13) while it took 45.41 h to kill 50% of tested population.Conclusions:Taking long time to kill 50%population when compare with the synthetic insecticides,is the only drawback for the use of entomopathogenic fungus but these bio-pesticides are safe for the use.
基金supported by Faculty of Agricultural Technology,KMITL,Bangkok,Thailand(Grant no 01-04-002)the National Research Council of Thailand(GRAD 6007KMITL)
文摘Objective: To investigate the efficacies of 12 essential oil(EO) formulations from three Zingiberaceae plants(Alpinia galanga, Curcuma zedoaria, and Zingiber cassumunar) individually and in combination with an augmenting Eucalyptus globulus(E. globulus) EO against females of Aedes albopictus(Ae. albopictus) and Anopheles minimus(An. minimus). Methods: These formulations were evaluated for their ovicidal, oviposition deterrent and adulticidal activities against Ae. albopictus and An. minimus by a topical method, a double-choice method and a WHO susceptibility test, respectively. Results: It was found that all formulations of Zingiberaceae plants EOs augmented with E. globulus EO were more effective in oviposition deterrent, ovicidal, and adulticidal activities against the two mosquito species than all of the formulations used without E. globulus EO. Their oviposition deterrent, ovicidal and adulticidal activities were equivalent to those of 10% w/v cypermethrin. In contrast, 70% v/v ethyl alcohol as a control alone was not effective at all. The highest synergistic effect in effective repellency against Ae. albopictus was achieved by 5% Alpinia galanga EO + 5% E. globulus EO and against An. minimus was 5% Zingiber cassumunar EO + 5% E. globulus EO. Moreover, the highest synergistic effects in ovicidal activities against Ae. albopictus and An. minimus were achieved by 10% Zingiber cassumunar EO + 10% E. globulus EO and 5% Curcuma zedoaria EO + 5% E. globulus EO, respectively. For the adulticidal activities, the highest synergistic effect against two mosquitoes was achieved by 5% Curcuma zedoaria EO + 5% E. globulus EO. Conclusions: These results suggest that Zingiberaceae plant EOs augmented with E. globulus EO have a high potential to be developed into oviposition deterrent, ovicidal, and adulticidal agents for controlling populations of Ae. albopictus and An. minimus.