针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数...针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数据包特征;然后构建Q-learning算法模型探索状态值和奖励值的平衡点,利用SA(Simulated Annealing模拟退火)算法从全局视角对下一时刻状态进行精确识别;最后确定训练样本的联合分布概率,提升输出值的逼近性能以达到平衡探索与代价之间的均衡。测试结果显示:改进Q-learning算法的网络异常定位准确率均值达99.4%,在不同类型网络异常的分类精度和分类效率等方面,也优于三种传统网络异常诊断方法。展开更多
加密视频识别是网络安全和网络管理领域亟待解决的问题,已有的方法是将视频的加密传输指纹与视频指纹库中的视频指纹进行匹配,从而识别出加密传输的视频.现有工作主要集中在匹配识别算法的研究上,但是没有专门针对待匹配数据源的研究,...加密视频识别是网络安全和网络管理领域亟待解决的问题,已有的方法是将视频的加密传输指纹与视频指纹库中的视频指纹进行匹配,从而识别出加密传输的视频.现有工作主要集中在匹配识别算法的研究上,但是没有专门针对待匹配数据源的研究,也缺少在大型视频指纹库里对这些算法的查准率和假阳率指标的分析,由此造成现有成果的实用性不能保证.针对这一问题,首先分析使用安全传输层协议加密的应用数据单元(application data unit,简称ADU)密文长度相对明文长度发生漂移的原因,首次将HTTP头部特征和TLS片段特征作为ADU长度复原的拟合特征,提出了一种对加密ADU指纹精准复原方法HHTF,并将其应用于加密视频识别.基于真实Facebook视频模拟构建了20万级的大型指纹库.从理论上推导并计算出:只需已有方法十分之一的ADU数目,在该指纹库中视频识别准确率、查准率、查全率达到100%,假阳率达到0.在模拟大型视频指纹库中的实验结果与理论推导结果一致.HHTF方法的应用,使得在大规模视频指纹库场景中识别加密传输的视频成为可能,具有很强的实用性和应用价值.展开更多
文摘针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数据包特征;然后构建Q-learning算法模型探索状态值和奖励值的平衡点,利用SA(Simulated Annealing模拟退火)算法从全局视角对下一时刻状态进行精确识别;最后确定训练样本的联合分布概率,提升输出值的逼近性能以达到平衡探索与代价之间的均衡。测试结果显示:改进Q-learning算法的网络异常定位准确率均值达99.4%,在不同类型网络异常的分类精度和分类效率等方面,也优于三种传统网络异常诊断方法。
文摘加密视频识别是网络安全和网络管理领域亟待解决的问题,已有的方法是将视频的加密传输指纹与视频指纹库中的视频指纹进行匹配,从而识别出加密传输的视频.现有工作主要集中在匹配识别算法的研究上,但是没有专门针对待匹配数据源的研究,也缺少在大型视频指纹库里对这些算法的查准率和假阳率指标的分析,由此造成现有成果的实用性不能保证.针对这一问题,首先分析使用安全传输层协议加密的应用数据单元(application data unit,简称ADU)密文长度相对明文长度发生漂移的原因,首次将HTTP头部特征和TLS片段特征作为ADU长度复原的拟合特征,提出了一种对加密ADU指纹精准复原方法HHTF,并将其应用于加密视频识别.基于真实Facebook视频模拟构建了20万级的大型指纹库.从理论上推导并计算出:只需已有方法十分之一的ADU数目,在该指纹库中视频识别准确率、查准率、查全率达到100%,假阳率达到0.在模拟大型视频指纹库中的实验结果与理论推导结果一致.HHTF方法的应用,使得在大规模视频指纹库场景中识别加密传输的视频成为可能,具有很强的实用性和应用价值.