Ce/BEA has the potential to be applied as a novel passive NO_(x)absorber(PNA)in the after-treatment of vehicles due to its considerable NO_(x)storage capacity.However,as a vehicle exhaust after-treatment material,it m...Ce/BEA has the potential to be applied as a novel passive NO_(x)absorber(PNA)in the after-treatment of vehicles due to its considerable NO_(x)storage capacity.However,as a vehicle exhaust after-treatment material,it must withstand the test of long-term hydrothermal aging.This work examined the deactivation mechanism of Ce/BEA during hydrothermal aging.3.0 wt%Ce/BEA was prepared using the ionexchange method,and then subjected to hydrothermal treatment at 650℃with 10%H_(2)O for 1-12 h to obtain samples with different aging extent.For comparison,the H-BEA support was aged under the same conditions.Brunauer-Emmett-Teller(BET)method,X-ray diffraction(XRD),NH_(3)temperature programmed reduction(NH_(3)-TPD),^(27)Al MAS nuclear magnetic resonance(^(27)Al MAS NMR),H_(2)temperature programmed reduction(H_(2)-TPR),and high resolution-transmission electron microscopy(HR-TEM)were performed to characterize the changes in PNA performance,structure,Ce species,and acidity.The HR-TEM and H_(2)-TPR results show that CeO_(x)particles appear after hydrothermal aging,which results from the detachment and aggregation of active Ce species.Based on the^(27)Al MAS NMR results,we conclude that BEA zeolite dealumination leads to the loss of acidic sites and the transformation of active Ce species on the acidic sites into the less active CeO_(x).This is the primary reason for the hydrothermal aging deactivation of Ce/BEA.展开更多
Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capa...Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.展开更多
Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety p...Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.展开更多
Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed...Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.展开更多
The paper deals with the modeling of the effect of maldistribution in pollutant abatementtrichloroethylene(TCE)concerning low concentration(10<sup>-5</sup>-10<sup>-8</sup>kg·m<sup>...The paper deals with the modeling of the effect of maldistribution in pollutant abatementtrichloroethylene(TCE)concerning low concentration(10<sup>-5</sup>-10<sup>-8</sup>kg·m<sup>-3</sup>)adsorption in an adsorber.Such a concentration range is rather typical in many an environmental application.Isotherms andbreakthrough curves for TCE adsorption are obtained both for a commercial activated carbonSorbonorit 4 and a laboratory adsorber of d<sub>B</sub>/d<sub>P</sub>=11.Two two-dimensional nonequilibrium isothermalmodels are developed to describe the mass transfer in the fixed bed taking into account the effect ofmaldistribution.It is found the simulation results with maldistribution are in very good agreementwith the experimental findings.Low concentration TCE adsorption in a fixed bed of activated carbonis found to be strongly influenced by maldistribution.The non-uniform distributions of concentrationand loading of the pollutant in the adsorber are predicted by the model.Maldistribution and its ef-fect on the initial breakthrough of TCE in展开更多
Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surfac...Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surface diffusion model and pore diffusion model, and noting the differences in the results, the following conditions are recommended for the prediction of the prevailing diffusion mode in diffusion-cell experimentsλ≤0.1,BiB≥100,and N≥1The theoretical prediction thus obtained checks well with experimental data taken from literature. New solutions are also presented for the surface diffusion model and the pore diffusion model with rectangular adsorption isotherm.展开更多
Due to the technology limitation and inferior deNO_(x) efficiency of urea selective catalytic reduction (SCR) catalysts at low temperatures, passive NO_(x) adsorber (PNA) for decrease of NO_(x), CO and hydrocarbons (H...Due to the technology limitation and inferior deNO_(x) efficiency of urea selective catalytic reduction (SCR) catalysts at low temperatures, passive NO_(x) adsorber (PNA) for decrease of NO_(x), CO and hydrocarbons (HCs) during “cold start” of vehicles was proposed to meet the further tighten NO_(x) emission regulations in future. Among them, Pd modified zeolite PNA materials have received more attention because of their excellent NO_(x) storage capacity, anti-poisoning and hydrothermal stability and since Pd/zeolite PNA was proposed, a variety of advanced characterization methods have been applied to investigate its adsorption behavior and structure-performance relationship. The comprehension of the active sites and adsorption chemistry of Pd/zeolite PNA was also significantly improved. However, there are few reviews that systematically summarize the recent progress and application challenges in atomic-level understanding of this material. In this review, we summarized the latest research progress of Pd/zeolite PNA, including active adsorption sites, adsorption mechanism, material physicochemical properties, preparation methods, storage and release performance and structure-performance relationships. In addition, the deactivation challenges faced by Pd/zeolite PNA in practical applications, such as chemical poisoning, high temperature hydrothermal aging deactivation, etc., were also discussed at the micro-level, and some possible effective countermeasures are given. Besides, some possible improvements and research hotspots were put forward, which could be helpful for designing and constructing more efficient PNA materials for meeting the ultra-low NO_(x) emission regulation in the future.展开更多
A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) w...A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) were conducted and characterization methods such as X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and in situ Fourier transform infrared spectroscopy(in situ DRIFTS)were involved.The experimental results show that Mn-contained catalysts,Mn-Ti and Pd-Mn-Ti,performed excellent NO_(x) adsorbing ability and appropriate desorption temperature window.On the other hand,Ce-and Cu-contained samples were not suitable for the purpose of PNA.In addition to the low adsorption capacity,these two series of catalysts released massive amount of NO below 150℃.Characterization results indicated that Pd was highly dispersed on all catalysts.The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well.From in situ DRIFTS tests,the Pd had little influence on the types of adsorbed substances for Mn,Ce and Cu series.However,the storage forms of NO_(x) were obviously different on Pd-Fe-Ti and Fe-Ti.展开更多
P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe th...P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system.展开更多
The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Flui...The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)model combined with the adsorption model is proposed.The developed CFD-DEM model is validated by comparing simulated results with experimental data and empirical correlation.Subsequently,the effect of particle packing structure and particle shapes on the dynamic adsorption process are analyzed in detail.The results reveal the mechanism of particle packing structure affecting axial velocity distribution,showing that uneven distribution of resistance on the outer flow channel side leads to uneven axial velocity distribution in the bed.Compared to cylindrical adsorbents,the use of spherical adsorbents results in a more uniform axial velocity distribution,consequently reducing bed pressure drop.The study holds significant potential for optimizing gas distribution and improving separation efficiency in future industrial applications.展开更多
Air flow distribution in radial flow adsorber was numerically investigated using computational fluid dynamics(CFD)method,which was proved to be applicable to study the problem of non-uniform distribution in radial flo...Air flow distribution in radial flow adsorber was numerically investigated using computational fluid dynamics(CFD)method,which was proved to be applicable to study the problem of non-uniform distribution in radial flow adsorber.Results showed that the degree of non-uniformity was more serious in desorption process than that is adsorption process.Therefore,it was considered that the non-uniform distribution of flow in a radial flow adsorber was mainly manifested in the desorption process.Optimum design of distributor parameters can improve the flow distribution in adsorber.Meanwhile,three different structures of distributor and the effect of breathing valve were analyzed.Results revealed that truncated cone is more effective than tubular and conical distributors in flow distribution.By inserting the truncated cone in central channel,desorption uniformity was increased by 6.56%and the breakthrough time of CO_(2)was extended from 564s to 1138s in the adsorption process.The“dead zone”problem at the top of adsorber during the desorption process was solved by opening breathing valve,which prolonged the working life of adsorber and was proved to have less effect on the uniform of airflow.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intr...Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intracrystalline diffusion of vip molecules serves to enhance the selectivities dictated by thermodynamics of mixture adsorption.In antisynergistic separations,intracrystalline diffusion serves to reverse the hierarchy of selectivities dictated by adsorption equilibrium.For both scenarios,the productivities of the desired product in fixed-bed operations are crucially dependent on diffusional time constants,Đi/rc 2;these need to be sufficiently low in order for diffusional influences to be effective.Also,the ratioĐ1/Đ2 should be large enough for manifestation of synergistic or antisynergistic influence.Both synergistic and antisynergistic separations have two common,distinguishing characteristics.Firstly,for transient uptake within crystals,the more mobile component attains supraequilibrium loadings during the initial stages of the transience.Such overshoots,signifying uphill diffusion,are engendered by the cross-coefficientsΓij(i≠j)of thermodynamic correction factors.Secondly,the component molar loadings,plotted in composition space,follow serpentine equilibration paths.If cross-coefficients are neglected,no overshoots in the loadings of the more mobile component are experienced,and the component loadings follow monotonous equilibration paths.The important takeaway message is that the modeling of mixture separations in fixed-bed adsorbers requires the use of the Maxwell−Stefan equations describing mixture diffusion employing chemical potential gradients as driving forces.展开更多
Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material...Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.展开更多
This paper demonstrates the strategic molecular design of functional polymer monoliths comprised of mesoporous fibers with stimuli-responsive Joule-heating properties for the rapid and efficient recovery of viscous fu...This paper demonstrates the strategic molecular design of functional polymer monoliths comprised of mesoporous fibers with stimuli-responsive Joule-heating properties for the rapid and efficient recovery of viscous fuel oil from water.The mesoporous fibers were composed of carefully selected monomers,which spontaneously entangled with each other to form a spongy monolith in a one-pot synthesis process.The subsequent addition of polypyrrole nanoparticles to the polymer produced superwettable intertwined fibers with strain-responsive conductivity,allowing the monolith to be used as a compressible,fibrous,and porous adsorbent with a high-flux separation capability and a tunable electrical heating effect.This adsorbent was demonstrated to successfully separate different types of low-viscosity oil from water in a continuous,highly efficient process.It also induced a rapid increase in the temperature during the recovery of marine fuel oil(MFO380),with a minimal compression of 3%under an external voltage.The proposed adsorbent can thus be used for the effective recovery of various fuel oils and improved further by incorporating other synergistic components for various water-treatment systems.展开更多
Lead(Pb)is a toxic metal found in wastewater,posing significant health risks to both humans and the environment.This study aimed to develop a novel adsorbent for lead removal from aqueous solutions.This adsorbent,a co...Lead(Pb)is a toxic metal found in wastewater,posing significant health risks to both humans and the environment.This study aimed to develop a novel adsorbent for lead removal from aqueous solutions.This adsorbent,a coffee husk extract-capped magnetite with pumice silica nanocomposite(CHE-capped M/PU/Si-NC),was synthesized using a completely green approach.The novelty of this study lies in the green synthesis of silica nanoparticles(SiO_(2)-NPs)throughout the process.Coffee husk extract(CHE)served as both a stabilizing and capping agent for the SiO_(2)-NPs,which were synthesized from sodium silicate(Na_(2)SiO_(3))extracted from bagasse ash(BA).Subsequently,the CHE-capped silica was co-precipitated with phyto-fabricated magnetite and integrated into a pumice matrix to produce the final CHE-capped M/PU/Si-NC adsorbent.The CHE-capped M/PU/Si-NC was characterized using SEM,XRF,FTIR,BET,XRD,TGA,and zeta potential analysis.The surface area of the CHE-capped M/PU/Si-NC was determined to be 313 m^(2)·g^(-1),and TGA results indicated good thermal stability up to 690℃.The zeta potential was measured at-37.7 mV.XRD analysis of CHE-capped M/PU/Si-NC confirmed the formation of magnetite and revealed its crystal structure.The maximum adsorption performance of this material was observed to be 95%at an adsorbent dosage of 2 g·L^(-1) and an initial Pb^(2+)concentration of 100 g·L^(-1).The adsorption kinetics were best described by the pseudo-second-order kinetic model.The Langmuir isotherm provided a good fit with a maximum adsorption capacity of 150 mg·g^(-1)(R^(2)=0.99).Regeneration studies demonstrated that the adsorbent maintained its high Pb^(2+) uptake capacity for up to five cycles.Overall,these findings suggest that this adsorbent is a promising candidate for the removal of Pb^(2+) from water and wastewater.展开更多
Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agen...Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agents,functional dendritic polyurethanes with nano structure were successfully prepared by one-pot method.The single molecule size and surface morphology were characterized by dynamic light scattering,transmission electron microscopy and scanning electron microscopy,and the molecular size in the dry state was 11 to 18 nm.The prepared materials were used as the boron adsorbents,and the effects of pH,time,boron solution concentration and temperature on the adsorption were studied.The results showed that the capacity of adsorbed boron could reach 110-130 mg·g^(-1).Adsorption was a homogeneous monolayer adsorption controlled by chemisorption,and adsorption thermodynamics showed that was a spontaneous endothermic process.Adsorption behavior was best described by the pseudo-second-order kinetic model and the Langmuir isotherm.This study also showed that it was difficult for ortho/meta-hydroxyl groups to chelate with H_(3)BO_(3) and other polyborates,and the chelates mainly had good chelating properties with B(OH)_(4)^(-),and the chelates formed had large steric hindrance.At the same time,increasing the number of hydroxyl groups of functional monomers was beneficial to increase the adsorption capacity of materials.In addition,the cyclic adsorption/desorption experiments showed that DPUs have good cyclic stability.At the same time,the adsorption results of the original salt lake brine showed that other metal ions in the brine had little effect on the adsorption of boron,and the adsorption capacity was as high as52.93 mg·g^(-1),and the maximum adsorption capacity was obtained by Adams-Bohart model to58.80 mg·g^(-1).The outstanding selectivity and adsorption capacity of these materials have broad potential application,and are expected to be used for the efficient adsorption and removal in boroncontaining water bodies.展开更多
This study introduced a microwave-assisted pyrolysis method for the rapid and efficientpreparation of boron-doped porous biochar. The resulting biochar exhibited a large specificsurface area (933.39 m^(2)/g), a rich p...This study introduced a microwave-assisted pyrolysis method for the rapid and efficientpreparation of boron-doped porous biochar. The resulting biochar exhibited a large specificsurface area (933.39 m^(2)/g), a rich porous structure (1.044 cm3/g), and abundant active sites.Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbingtetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantlyexceeded that of unmodified biochar andmost commercial and reported adsorbents.The correlation analysis between the adsorption capacity and adsorbent characteristics revealedthat the formation of the –BCO_(2) group enhanced π–π electron donor–acceptor interactionsbetween boron-doped porous biochar and tetracycline. This mechanism mainlycontributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally,the as-prepared boron-doped porous biochar exhibited broad applications in removingantibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue andrhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability,and its adsorption capacity can be nearly completely regenerated through simple heat treatment.This study provides new insights into the effectiveness of boron-doped carbonaceousmaterials in removing antibiotic contaminants.展开更多
The manufacture and obsolescence of smartphones produce numerous waste plastic accessories(e.g.,waste smartphone protective film(WSPF)),possessing immense potential for recycling.However,available recycling technologi...The manufacture and obsolescence of smartphones produce numerous waste plastic accessories(e.g.,waste smartphone protective film(WSPF)),possessing immense potential for recycling.However,available recycling technologies have limitations such as substrate damage and secondary pollutant generation.The present study aimed to develop a green disposal method that not only recycled polyethylene terephthalate(PET)from WSPF,but also reused the stripped polyacrylate(PAA)adhesive as an adsorbent to reduce solid waste generation.When the WSPF was treated in 1 mol/L NaOH solution at 90°C,the PAA hydrolyzed to two main by-products of 1-butanol and 2-ethylhexanol,weakening the binding strength between PAA and PET and then efficient separation of them.Further bench-scale test revealed that over 97.2%of detachment efficiency toward PAA was achieved during continuous treatment of 17 batches of WSPF(200 g for each)without supplement of NaOH and generation of wastewater.Meanwhile,the economic evaluation indicated that the recycling method would generate a net profit margin of 647%for the second year without considering the incurrence of new cost and input.Additionally,the pyrolysis of waste PAA enabled its conversion into potential adsorbent,which showed 2 to 4 times enhanced adsorption capacity toward styrene and ethyl acetate after modification with NaOH solution.This study provides a green method for recycling waste plastics and inspires a referable solution for solid waste treatment in the smartphone industry.展开更多
Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobi...Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobic Cu(I)based adsorbents were fabricated using polytetrafluoroethylene(PTFE)for the hydrophobic modification,effectively avoiding the contact of CuCl active species with moisture,thereby inhibiting the oxidation of the Cu(I)based adsorbents.The successful introduction of PTFE into the activated carbon(AC)carrier significantly improves the hydrophobicity of the adsorbent.The optimal adsorbent CuCl(6)@AC-PTFE(0.10%)with the CuCl loading of 6 mmol·g^(-1)and the PTFE mass concentration of 0.10%exhibits an excellent CO adsorption capacity of 3.61 mmol·g^(-1)(303 K,500 kPa)as well as high CO/CO_(2)and CO/N_(2)adsorption selectivities of 29 and 203(303 K,100 kPa).Particularly,compared with the unmodified adsorbents,the antioxidant performance of modified adsorbent CuCl(6)@AC-PTFE(0.10%)is significantly improved,holding 86%of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%,making the fabricated composite a promising adsorbent for CO separation.展开更多
基金supported the National Key R&D Program of China(2021YFB3503200)the Innovative Research Groups of the National Natural Science Foundation of China(51921004)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Key R&D Project of Shandong Province(2021CXGC010703,2022CXGC020311)。
文摘Ce/BEA has the potential to be applied as a novel passive NO_(x)absorber(PNA)in the after-treatment of vehicles due to its considerable NO_(x)storage capacity.However,as a vehicle exhaust after-treatment material,it must withstand the test of long-term hydrothermal aging.This work examined the deactivation mechanism of Ce/BEA during hydrothermal aging.3.0 wt%Ce/BEA was prepared using the ionexchange method,and then subjected to hydrothermal treatment at 650℃with 10%H_(2)O for 1-12 h to obtain samples with different aging extent.For comparison,the H-BEA support was aged under the same conditions.Brunauer-Emmett-Teller(BET)method,X-ray diffraction(XRD),NH_(3)temperature programmed reduction(NH_(3)-TPD),^(27)Al MAS nuclear magnetic resonance(^(27)Al MAS NMR),H_(2)temperature programmed reduction(H_(2)-TPR),and high resolution-transmission electron microscopy(HR-TEM)were performed to characterize the changes in PNA performance,structure,Ce species,and acidity.The HR-TEM and H_(2)-TPR results show that CeO_(x)particles appear after hydrothermal aging,which results from the detachment and aggregation of active Ce species.Based on the^(27)Al MAS NMR results,we conclude that BEA zeolite dealumination leads to the loss of acidic sites and the transformation of active Ce species on the acidic sites into the less active CeO_(x).This is the primary reason for the hydrothermal aging deactivation of Ce/BEA.
基金supported by the National Key R&D Program of China(2021YFB3503200)the Major Science and Technology Programs of Yunnan Province(202002AB080001-1)。
文摘Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51176164)
文摘Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.
基金Supported by the National Key R&D Program of China(2017YFB0603702)the Natural Science Foundation of Zhejiang Province(Y15E060014)+1 种基金the National Natural Science Foundation of China(51636007)Shanghai Young Teachers Development Program(10-16-301-801)
文摘Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.
文摘The paper deals with the modeling of the effect of maldistribution in pollutant abatementtrichloroethylene(TCE)concerning low concentration(10<sup>-5</sup>-10<sup>-8</sup>kg·m<sup>-3</sup>)adsorption in an adsorber.Such a concentration range is rather typical in many an environmental application.Isotherms andbreakthrough curves for TCE adsorption are obtained both for a commercial activated carbonSorbonorit 4 and a laboratory adsorber of d<sub>B</sub>/d<sub>P</sub>=11.Two two-dimensional nonequilibrium isothermalmodels are developed to describe the mass transfer in the fixed bed taking into account the effect ofmaldistribution.It is found the simulation results with maldistribution are in very good agreementwith the experimental findings.Low concentration TCE adsorption in a fixed bed of activated carbonis found to be strongly influenced by maldistribution.The non-uniform distributions of concentrationand loading of the pollutant in the adsorber are predicted by the model.Maldistribution and its ef-fect on the initial breakthrough of TCE in
文摘Theoretical considerations on diffusion modes of adsorbates in diffusion-cell adsorbers are being investigated. By studying the effects of the operating and model parameters on the response curves calculated by surface diffusion model and pore diffusion model, and noting the differences in the results, the following conditions are recommended for the prediction of the prevailing diffusion mode in diffusion-cell experimentsλ≤0.1,BiB≥100,and N≥1The theoretical prediction thus obtained checks well with experimental data taken from literature. New solutions are also presented for the surface diffusion model and the pore diffusion model with rectangular adsorption isotherm.
基金financial support from the National Natural Science Foundation of China (No. 52000084)the China Postdoctoral Science Foundation (No. 2019M662630)National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2018A08)。
文摘Due to the technology limitation and inferior deNO_(x) efficiency of urea selective catalytic reduction (SCR) catalysts at low temperatures, passive NO_(x) adsorber (PNA) for decrease of NO_(x), CO and hydrocarbons (HCs) during “cold start” of vehicles was proposed to meet the further tighten NO_(x) emission regulations in future. Among them, Pd modified zeolite PNA materials have received more attention because of their excellent NO_(x) storage capacity, anti-poisoning and hydrothermal stability and since Pd/zeolite PNA was proposed, a variety of advanced characterization methods have been applied to investigate its adsorption behavior and structure-performance relationship. The comprehension of the active sites and adsorption chemistry of Pd/zeolite PNA was also significantly improved. However, there are few reviews that systematically summarize the recent progress and application challenges in atomic-level understanding of this material. In this review, we summarized the latest research progress of Pd/zeolite PNA, including active adsorption sites, adsorption mechanism, material physicochemical properties, preparation methods, storage and release performance and structure-performance relationships. In addition, the deactivation challenges faced by Pd/zeolite PNA in practical applications, such as chemical poisoning, high temperature hydrothermal aging deactivation, etc., were also discussed at the micro-level, and some possible effective countermeasures are given. Besides, some possible improvements and research hotspots were put forward, which could be helpful for designing and constructing more efficient PNA materials for meeting the ultra-low NO_(x) emission regulation in the future.
基金Project(52106173)supported by the National Natural Science Foundation of ChinaProject(2020TQ0187)supported by the Postdoctoral Research Foundation of China。
文摘A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) were conducted and characterization methods such as X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and in situ Fourier transform infrared spectroscopy(in situ DRIFTS)were involved.The experimental results show that Mn-contained catalysts,Mn-Ti and Pd-Mn-Ti,performed excellent NO_(x) adsorbing ability and appropriate desorption temperature window.On the other hand,Ce-and Cu-contained samples were not suitable for the purpose of PNA.In addition to the low adsorption capacity,these two series of catalysts released massive amount of NO below 150℃.Characterization results indicated that Pd was highly dispersed on all catalysts.The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well.From in situ DRIFTS tests,the Pd had little influence on the types of adsorbed substances for Mn,Ce and Cu series.However,the storage forms of NO_(x) were obviously different on Pd-Fe-Ti and Fe-Ti.
基金Funded by the Research Fund of the Guangdong Provincial Laboratory of Green Chemical Product Technology(China)the Science Foundation for Young Teachers of Wuyi University(No.2013zk11)
文摘P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system.
基金financially supported by the National Key R&D Program of China(grant No.2019YFB1505000).
文摘The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)model combined with the adsorption model is proposed.The developed CFD-DEM model is validated by comparing simulated results with experimental data and empirical correlation.Subsequently,the effect of particle packing structure and particle shapes on the dynamic adsorption process are analyzed in detail.The results reveal the mechanism of particle packing structure affecting axial velocity distribution,showing that uneven distribution of resistance on the outer flow channel side leads to uneven axial velocity distribution in the bed.Compared to cylindrical adsorbents,the use of spherical adsorbents results in a more uniform axial velocity distribution,consequently reducing bed pressure drop.The study holds significant potential for optimizing gas distribution and improving separation efficiency in future industrial applications.
基金The project is funded by the Fundamental Research Funds for the Central Universities with No.3082017NS2017005.
文摘Air flow distribution in radial flow adsorber was numerically investigated using computational fluid dynamics(CFD)method,which was proved to be applicable to study the problem of non-uniform distribution in radial flow adsorber.Results showed that the degree of non-uniformity was more serious in desorption process than that is adsorption process.Therefore,it was considered that the non-uniform distribution of flow in a radial flow adsorber was mainly manifested in the desorption process.Optimum design of distributor parameters can improve the flow distribution in adsorber.Meanwhile,three different structures of distributor and the effect of breathing valve were analyzed.Results revealed that truncated cone is more effective than tubular and conical distributors in flow distribution.By inserting the truncated cone in central channel,desorption uniformity was increased by 6.56%and the breakthrough time of CO_(2)was extended from 564s to 1138s in the adsorption process.The“dead zone”problem at the top of adsorber during the desorption process was solved by opening breathing valve,which prolonged the working life of adsorber and was proved to have less effect on the uniform of airflow.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
文摘Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intracrystalline diffusion of vip molecules serves to enhance the selectivities dictated by thermodynamics of mixture adsorption.In antisynergistic separations,intracrystalline diffusion serves to reverse the hierarchy of selectivities dictated by adsorption equilibrium.For both scenarios,the productivities of the desired product in fixed-bed operations are crucially dependent on diffusional time constants,Đi/rc 2;these need to be sufficiently low in order for diffusional influences to be effective.Also,the ratioĐ1/Đ2 should be large enough for manifestation of synergistic or antisynergistic influence.Both synergistic and antisynergistic separations have two common,distinguishing characteristics.Firstly,for transient uptake within crystals,the more mobile component attains supraequilibrium loadings during the initial stages of the transience.Such overshoots,signifying uphill diffusion,are engendered by the cross-coefficientsΓij(i≠j)of thermodynamic correction factors.Secondly,the component molar loadings,plotted in composition space,follow serpentine equilibration paths.If cross-coefficients are neglected,no overshoots in the loadings of the more mobile component are experienced,and the component loadings follow monotonous equilibration paths.The important takeaway message is that the modeling of mixture separations in fixed-bed adsorbers requires the use of the Maxwell−Stefan equations describing mixture diffusion employing chemical potential gradients as driving forces.
基金supported by Shanxi Provincial Key Research and Development Project(202102090301026)Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2023024)。
文摘Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(no.2022R1C1C1003149 and 2020R1A5A8018367)by the Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(00254781)This research was alsosupported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(no.RS-202400345266)。
文摘This paper demonstrates the strategic molecular design of functional polymer monoliths comprised of mesoporous fibers with stimuli-responsive Joule-heating properties for the rapid and efficient recovery of viscous fuel oil from water.The mesoporous fibers were composed of carefully selected monomers,which spontaneously entangled with each other to form a spongy monolith in a one-pot synthesis process.The subsequent addition of polypyrrole nanoparticles to the polymer produced superwettable intertwined fibers with strain-responsive conductivity,allowing the monolith to be used as a compressible,fibrous,and porous adsorbent with a high-flux separation capability and a tunable electrical heating effect.This adsorbent was demonstrated to successfully separate different types of low-viscosity oil from water in a continuous,highly efficient process.It also induced a rapid increase in the temperature during the recovery of marine fuel oil(MFO380),with a minimal compression of 3%under an external voltage.The proposed adsorbent can thus be used for the effective recovery of various fuel oils and improved further by incorporating other synergistic components for various water-treatment systems.
文摘Lead(Pb)is a toxic metal found in wastewater,posing significant health risks to both humans and the environment.This study aimed to develop a novel adsorbent for lead removal from aqueous solutions.This adsorbent,a coffee husk extract-capped magnetite with pumice silica nanocomposite(CHE-capped M/PU/Si-NC),was synthesized using a completely green approach.The novelty of this study lies in the green synthesis of silica nanoparticles(SiO_(2)-NPs)throughout the process.Coffee husk extract(CHE)served as both a stabilizing and capping agent for the SiO_(2)-NPs,which were synthesized from sodium silicate(Na_(2)SiO_(3))extracted from bagasse ash(BA).Subsequently,the CHE-capped silica was co-precipitated with phyto-fabricated magnetite and integrated into a pumice matrix to produce the final CHE-capped M/PU/Si-NC adsorbent.The CHE-capped M/PU/Si-NC was characterized using SEM,XRF,FTIR,BET,XRD,TGA,and zeta potential analysis.The surface area of the CHE-capped M/PU/Si-NC was determined to be 313 m^(2)·g^(-1),and TGA results indicated good thermal stability up to 690℃.The zeta potential was measured at-37.7 mV.XRD analysis of CHE-capped M/PU/Si-NC confirmed the formation of magnetite and revealed its crystal structure.The maximum adsorption performance of this material was observed to be 95%at an adsorbent dosage of 2 g·L^(-1) and an initial Pb^(2+)concentration of 100 g·L^(-1).The adsorption kinetics were best described by the pseudo-second-order kinetic model.The Langmuir isotherm provided a good fit with a maximum adsorption capacity of 150 mg·g^(-1)(R^(2)=0.99).Regeneration studies demonstrated that the adsorbent maintained its high Pb^(2+) uptake capacity for up to five cycles.Overall,these findings suggest that this adsorbent is a promising candidate for the removal of Pb^(2+) from water and wastewater.
基金financially supported by Applied Basic Research Project of Qinghai province(2023-ZJ-774)。
文摘Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agents,functional dendritic polyurethanes with nano structure were successfully prepared by one-pot method.The single molecule size and surface morphology were characterized by dynamic light scattering,transmission electron microscopy and scanning electron microscopy,and the molecular size in the dry state was 11 to 18 nm.The prepared materials were used as the boron adsorbents,and the effects of pH,time,boron solution concentration and temperature on the adsorption were studied.The results showed that the capacity of adsorbed boron could reach 110-130 mg·g^(-1).Adsorption was a homogeneous monolayer adsorption controlled by chemisorption,and adsorption thermodynamics showed that was a spontaneous endothermic process.Adsorption behavior was best described by the pseudo-second-order kinetic model and the Langmuir isotherm.This study also showed that it was difficult for ortho/meta-hydroxyl groups to chelate with H_(3)BO_(3) and other polyborates,and the chelates mainly had good chelating properties with B(OH)_(4)^(-),and the chelates formed had large steric hindrance.At the same time,increasing the number of hydroxyl groups of functional monomers was beneficial to increase the adsorption capacity of materials.In addition,the cyclic adsorption/desorption experiments showed that DPUs have good cyclic stability.At the same time,the adsorption results of the original salt lake brine showed that other metal ions in the brine had little effect on the adsorption of boron,and the adsorption capacity was as high as52.93 mg·g^(-1),and the maximum adsorption capacity was obtained by Adams-Bohart model to58.80 mg·g^(-1).The outstanding selectivity and adsorption capacity of these materials have broad potential application,and are expected to be used for the efficient adsorption and removal in boroncontaining water bodies.
基金supported by the National Natural Science Foundation of China(Nos.52100062,and 52230001)China Postdoctoral Science Foundation(No.2023M732785).
文摘This study introduced a microwave-assisted pyrolysis method for the rapid and efficientpreparation of boron-doped porous biochar. The resulting biochar exhibited a large specificsurface area (933.39 m^(2)/g), a rich porous structure (1.044 cm3/g), and abundant active sites.Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbingtetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantlyexceeded that of unmodified biochar andmost commercial and reported adsorbents.The correlation analysis between the adsorption capacity and adsorbent characteristics revealedthat the formation of the –BCO_(2) group enhanced π–π electron donor–acceptor interactionsbetween boron-doped porous biochar and tetracycline. This mechanism mainlycontributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally,the as-prepared boron-doped porous biochar exhibited broad applications in removingantibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue andrhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability,and its adsorption capacity can be nearly completely regenerated through simple heat treatment.This study provides new insights into the effectiveness of boron-doped carbonaceousmaterials in removing antibiotic contaminants.
基金supported by the National Natural Science Foundation of China(No.42177354)Guangzhou Basic and Applied Basic Research Scheme(No.2024A04J6358)the National Key R&D Program of China(No.2019YFC0214402).
文摘The manufacture and obsolescence of smartphones produce numerous waste plastic accessories(e.g.,waste smartphone protective film(WSPF)),possessing immense potential for recycling.However,available recycling technologies have limitations such as substrate damage and secondary pollutant generation.The present study aimed to develop a green disposal method that not only recycled polyethylene terephthalate(PET)from WSPF,but also reused the stripped polyacrylate(PAA)adhesive as an adsorbent to reduce solid waste generation.When the WSPF was treated in 1 mol/L NaOH solution at 90°C,the PAA hydrolyzed to two main by-products of 1-butanol and 2-ethylhexanol,weakening the binding strength between PAA and PET and then efficient separation of them.Further bench-scale test revealed that over 97.2%of detachment efficiency toward PAA was achieved during continuous treatment of 17 batches of WSPF(200 g for each)without supplement of NaOH and generation of wastewater.Meanwhile,the economic evaluation indicated that the recycling method would generate a net profit margin of 647%for the second year without considering the incurrence of new cost and input.Additionally,the pyrolysis of waste PAA enabled its conversion into potential adsorbent,which showed 2 to 4 times enhanced adsorption capacity toward styrene and ethyl acetate after modification with NaOH solution.This study provides a green method for recycling waste plastics and inspires a referable solution for solid waste treatment in the smartphone industry.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MB135)the Major Scientific and Technological Innovation Project of Shandong Province(2021ZDSYS13).
文摘Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobic Cu(I)based adsorbents were fabricated using polytetrafluoroethylene(PTFE)for the hydrophobic modification,effectively avoiding the contact of CuCl active species with moisture,thereby inhibiting the oxidation of the Cu(I)based adsorbents.The successful introduction of PTFE into the activated carbon(AC)carrier significantly improves the hydrophobicity of the adsorbent.The optimal adsorbent CuCl(6)@AC-PTFE(0.10%)with the CuCl loading of 6 mmol·g^(-1)and the PTFE mass concentration of 0.10%exhibits an excellent CO adsorption capacity of 3.61 mmol·g^(-1)(303 K,500 kPa)as well as high CO/CO_(2)and CO/N_(2)adsorption selectivities of 29 and 203(303 K,100 kPa).Particularly,compared with the unmodified adsorbents,the antioxidant performance of modified adsorbent CuCl(6)@AC-PTFE(0.10%)is significantly improved,holding 86%of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%,making the fabricated composite a promising adsorbent for CO separation.