1 Active Disturbance Rejection Control(ADRC):a brief survey Since its inception,Active Disturbance Rejection Control(ADRC)has re-centered feedback controller design around two fundamental ideas—along with a consequen...1 Active Disturbance Rejection Control(ADRC):a brief survey Since its inception,Active Disturbance Rejection Control(ADRC)has re-centered feedback controller design around two fundamental ideas—along with a consequential design simplification:real-time estimation and online cancellation of the“total disturbance”conceived as the lumped effect of unknown internal dynamics and external inputs.The simplified design then proceeds in a customary fashion for the ideally remaining system model,which is devoid of the total disturbance.展开更多
This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain i...This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
文摘1 Active Disturbance Rejection Control(ADRC):a brief survey Since its inception,Active Disturbance Rejection Control(ADRC)has re-centered feedback controller design around two fundamental ideas—along with a consequential design simplification:real-time estimation and online cancellation of the“total disturbance”conceived as the lumped effect of unknown internal dynamics and external inputs.The simplified design then proceeds in a customary fashion for the ideally remaining system model,which is devoid of the total disturbance.
文摘针对双馈风电机组低电压穿越期间无功响应迟滞引发的连锁脱网问题,提出多源协同的动态无功补偿策略。区别于传统单一电压骤变场景的分段式控制策略,通过构建转子侧变流器(Rotor-side converter,RSC)、网侧变流器(Grid-side converter,GSC)与静止无功发生器(Static var generator,SVG)的多时间尺度协同控制,在低穿期间提供无功支撑,并在故障结束后抑制暂态过电压。同时在GSC侧控制中,设计了基于径向基神经网络自抗扰控制(Radial basis function neural network active disturbance rejection control,RBF-ADRC)的电压外环结构。该结构利用非线性扩张状态观测器,实时辨识并补偿系统中的扰动,从而有效抑制故障发生前后直流母线电压的波动,提升系统的稳定性。在此基础上,推导所提综合控制策略的定子侧短路电流和网侧短路电流,得到双馈风电机组馈出的短路全电流。最后,在MATLAB/Simulink平台上搭建1.5 MW双馈风电机组模型,验证了所提策略的有效性以及短路电流的准确性。
基金supported in part by the Brazilian research agencies CNPq and CAPESby the Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,FAPERJ-Brasil(Project E-26/210.425/2024).
文摘This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.