期刊文献+
共找到2,065篇文章
< 1 2 104 >
每页显示 20 50 100
Trade-off between propeller aerodynamics and aeroacoustics using unsteady adjoint-based design optimization
1
作者 Haolin ZHI Shuanghou DENG +2 位作者 Tianhang XIAO Ning QIN Jingliang GUO 《Chinese Journal of Aeronautics》 2025年第8期347-366,共20页
Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the... Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance. 展开更多
关键词 Aerodynamic AEROACOUSTIC Multidisciplinary optimization PROPELLER Unsteady adjoint method
原文传递
Adjoint-based RCS surface sensitivity calculation for very large electrical size object
2
作者 Jun Deng Zhenghong Gao +3 位作者 Lin Zhou Ke Zhao Jiangtao Huang Wei Zhang 《Defence Technology(防务技术)》 2025年第5期164-179,共16页
The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity desig... The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency. 展开更多
关键词 Surface sensitivity Gradient MLFMA Discrete adjoint Very large electrical size RCS
在线阅读 下载PDF
Sensitivity analysis of PM_(2.5)and O_(3) co-pollution in Beijing based on GRAPES-CUACE adjoint model
3
作者 Zhe Liu Xingqin An +2 位作者 ChaoWang Jiangtao Li Meng Cui 《Journal of Environmental Sciences》 2025年第12期461-475,共15页
In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation anal... In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation analysis on two typical co-pollution events in Beijing,occurring from July 22 to July 28,2019,and from April 25 to May 2,2020.These events were categorized into pre-trough southerly airflow type(Type 1)and post-trough northwest flow type(Type 2).Subsequently,sensitivity analyses using the GRAPES-CUACE adjoint model were performed to quantify the contributions of precursor emissions from Beijing and surrounding areas to PM_(2.5)and O_(3) concentrations in Beijing for two types of co-pollution.The results indicated that the spatiotemporal distribution of sensitive source region varied among different circulation types.Primary PM_(2.5)(PPM_(2.5))emissions from Hebei contributed the most to the 24-hour average PM_(2.5)(24-h PM_(2.5))peak concentration(41.6%-45.4%),followed by Beijing emissions(31%-35.7%).The maximum daily 8-hour average ozone peak concentration was primarily influenced by the emissions from Hebei and Beijing,with contribution ratios respectively of 32.8%-44.8% and 29%-42.1%.Additionally,NO_(x)emissions were the main contributors in Type 1,while both NO_(x)and VOCs emissions contributed similarly in Type 2.The iterative emission reduction experiments for two types of co-pollution indicated that Type 1 required emission reductions in NO_(x)(52.4%-71.8%)and VOCs(14.1%-33.8%)only.In contrast,Type 2 required combined emission reductions in NO_(x)(37.0%-65.1%),VOCs(30.7%-56.2%),and PPM_(2.5)(31%-46.9%).This study provided a reference for controlling co-pollution events and improving air quality in Beijing. 展开更多
关键词 adjoint modeling PM_(2.5)and O_(3)co-pollution Sensitivity analysis Pollution control BEIJING
原文传递
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method 被引量:2
4
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
在线阅读 下载PDF
Conservation laws,Lie symmetries,self adjointness,and soliton solutions for the Selkov–Schnakenberg system
5
作者 Kashif Ali Aly R Seadawy +1 位作者 Syed T R Rizvi Noor Aziz 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第2期29-44,共16页
In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous sol... In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots. 展开更多
关键词 Selkov-Schnakenberg system Lie symmetry analysis conservation laws adjointness INTEGRABILITY
原文传递
Stress sensitivity analysis for a wide-chord fan blade using an adjoint method
6
作者 Han YANG Shoujia GONG +4 位作者 Yi LI Junxing TANG Dingxi WANG Sheng HUANG Shenren XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期103-117,共15页
High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As adva... High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As advanced compressors are defined with a large design space,their optimization is most efficiently achieved using a gradient-based approach,where the gradient can be computed using an adjoint method,at a cost nearly independent of the dimension of the design space.While the adjoint method has been widely used for aerodynamic shape optimization,its use for structural shape optimizations of compressor blades has not been as well studied.This paper discussed a discrete adjoint solver for structural sensitivity analysis developed within the opensource Computational Structural Mechanics(CSM)software CalculiX,and proposed an efficient stress sensitivity analysis method based on the Finite Element Method(FEM)using adjoint.The proposed method is applied to compute the stress sensitivity of a wide-chord fan blade in a highbypass-ratio engine.The accuracy of the adjoint-based stress sensitivity is verified against central finite differences.In terms of computational efficiency,the adjoint approach is about 4.5 times more efficient than the conventional approach using finite differences.This works marks an important step towards fluid-structural coupled adjoint optimization of wide-chord fan blades. 展开更多
关键词 adjoint method Multidisciplinary optimization Stress sensitivity analysis Finite element method Shape optimization
原文传递
Introducing the nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N): I. Mathematical Framework
7
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2024年第1期11-42,共32页
This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the... This work presents the “n<sup>th</sup>-Order Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviated as “n<sup>th</sup>-FASAM-N”), which will be shown to be the most efficient methodology for computing exact expressions of sensitivities, of any order, of model responses with respect to features of model parameters and, subsequently, with respect to the model’s uncertain parameters, boundaries, and internal interfaces. The unparalleled efficiency and accuracy of the n<sup>th</sup>-FASAM-N methodology stems from the maximal reduction of the number of adjoint computations (which are considered to be “large-scale” computations) for computing high-order sensitivities. When applying the n<sup>th</sup>-FASAM-N methodology to compute the second- and higher-order sensitivities, the number of large-scale computations is proportional to the number of “model features” as opposed to being proportional to the number of model parameters (which are considerably more than the number of features).When a model has no “feature” functions of parameters, but only comprises primary parameters, the n<sup>th</sup>-FASAM-N methodology becomes identical to the extant n<sup>th</sup> CASAM-N (“n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) methodology. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces as opposed to exponentially increasing parameter-dimensional spaces thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities of any order with respect to the model’s features and/or primary uncertain parameters, boundaries, and internal interfaces. 展开更多
关键词 Computation of High-Order Sensitivities Sensitivities to Features of Model Parameters Sensitivities to Domain Boundaries adjoint Sensitivity Systems
在线阅读 下载PDF
Introducing the nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N): II. Illustrative Example
8
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2024年第1期43-95,共54页
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con... This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis. 展开更多
关键词 Nordheim-Fuchs Reactor Safety Model Feature Functions of Model Parameters High-Order Response Sensitivities to Parameters adjoint Sensitivity Systems
在线阅读 下载PDF
Second-Order Adjoint Sensitivity Analysis Methodology for Computing Exactly Response Sensitivities to Uncertain Parameters and Boundaries of Linear Systems: Mathematical Framework 被引量:3
9
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期329-354,共26页
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>... This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities. 展开更多
关键词 Second-Order Comprehensive adjoint Sensitivity Analysis Methodology (2nd-CASAM) First-Level adjoint Sensitivity System (1st-LASS) Second-Level adjoint Sensitivity System (2nd-LASS) Operator-Type Response Second-Order Sensitivities to Uncertain Model Boundaries Second-Order Sensitivities to Uncertain Model Parameters
在线阅读 下载PDF
Couplings in Multi-criterion Aerodynamic Optimization Problems Using Adjoint Methods and Game Strategies 被引量:4
10
作者 唐智礼 董军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期1-8,共8页
The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint ... The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint methods are coupled in parallel to compute Pareto front collaboratively. Conversely in a Nash game,adjoint methods are coupled in each player s decision making to achieve Nash equilibrium competitively. In Stackelberg game,adjoint methods used by players are nested hierarchically through incomp... 展开更多
关键词 multi-criterion optimization AERODYNAMICS adjoint methods game strategies Nash game Stackelberg game Pareto front
原文传递
提高基于Adjoint方法翼型优化设计鲁棒性的研究 被引量:4
11
作者 樊艳红 宋文萍 韩忠华 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第4期547-555,共9页
通过引入线搜索方法,提高了基于Adjoint方法翼型优化设计的鲁棒性。针对给定的目标函数,推导了贴体坐标系下相应的Adjoint方程与边界条件的具体表达形式,以及梯度表达式。通过数值求解流动控制方程和Adjoint方程,得到目标函数对设计变... 通过引入线搜索方法,提高了基于Adjoint方法翼型优化设计的鲁棒性。针对给定的目标函数,推导了贴体坐标系下相应的Adjoint方程与边界条件的具体表达形式,以及梯度表达式。通过数值求解流动控制方程和Adjoint方程,得到目标函数对设计变量的梯度,并采用线搜索方法获得最优步长,由此提高了优化算法的鲁棒性。算例表明,线搜索方法可以自动寻找最优的步长,有效解决了传统的取常数步长优化步长选取受到限制,优化结果受步长影响的问题,使得优化方法对步长的依赖性变小,提高了基于Adjoint方法翼型优化设计的鲁棒性。 展开更多
关键词 adjoint方法 气动优化设计 Navier—Stokes方程
在线阅读 下载PDF
Machine learning for adjoint vector in aerodynamic shape optimization 被引量:2
12
作者 Mengfei Xu Shufang Song +2 位作者 Xuxiang Sun Wengang Chen Weiwei Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第9期1416-1432,I0003,共18页
Adjoint method is widely used in aerodynamic design because only once solution of flow field is required for it to obtain the gradients of all design variables. However, the computational cost of adjoint vector is app... Adjoint method is widely used in aerodynamic design because only once solution of flow field is required for it to obtain the gradients of all design variables. However, the computational cost of adjoint vector is approximately equal to that of flow computation. In order to accelerate the solution of adjoint vector and improve the efficiency of adjoint-based optimization, machine learning for adjoint vector modeling is presented. Deep neural network (DNN) is employed to construct the mapping between the adjoint vector and the local flow variables. DNN can efficiently predict adjoint vector and its generalization is examined by a transonic drag reduction of NACA0012 airfoil. The results indicate that with negligible computational cost of the adjoint vector, the proposed DNN-based adjoint method can achieve the same optimization results as the traditional adjoint method. 展开更多
关键词 Machine learning Deep neural network adjoint vector modelling Aerodynamic shape optimization adjoint method
原文传递
关于极面的ADJOINT收缩(英文)
13
作者 赵逸才 《数学杂志》 CSCD 北大核心 2001年第3期253-260,共8页
高维代数簇的半线收缩已有很多研究 .将它们推广到极面收缩对高维簇的双有理分类理论是很有意义的 .设 X是非奇异的 n维射影簇 ,L是 X上的 ample除子 ,f:X→Y是以 KX(n- 3 ) L为支撑除子的极面收缩映射 .当 f 不是双有理映射时 ,Beltram... 高维代数簇的半线收缩已有很多研究 .将它们推广到极面收缩对高维簇的双有理分类理论是很有意义的 .设 X是非奇异的 n维射影簇 ,L是 X上的 ample除子 ,f:X→Y是以 KX(n- 3 ) L为支撑除子的极面收缩映射 .当 f 不是双有理映射时 ,Beltrametti等人系统的研究了 f 的结构 .本文主要研究 f 是双有理映射时的情形 .一个完整的结构定理被给出 . 展开更多
关键词 极面收缩 射影簇 支撑除子 高维簇 双有理分类 ample除子 双有理映射 adjoint收缩
在线阅读 下载PDF
STUDY ON THE ADJOINT METHOD IN DATA ASSIMILATION AND THE RELATED PROBLEMS 被引量:8
14
作者 吕咸青 吴自库 +1 位作者 谷艺 田纪伟 《应用数学和力学》 EI CSCD 北大核心 2004年第6期581-590,共10页
It is not reasonable that one can only use the adjoint of model in data assimilation. The simulated numerical experiment shows that for the tidal model, the result of the adjoint of equation is almost the same as that... It is not reasonable that one can only use the adjoint of model in data assimilation. The simulated numerical experiment shows that for the tidal model, the result of the adjoint of equation is almost the same as that of the adjoint of model: the averaged absolute difference of the amplitude between observations and simulation is less than 5.0 cm and that of the phase-lag is less than 5.0°. The results are both in good agreement with the observed M2 tide in the Bohai Sea and the Yellow Sea. For comparison, the traditional methods also have been used to simulate M2 tide in the Bohai Sea and the Yellow Sea. The initial guess values of the boundary conditions are given first, and then are adjusted to acquire the simulated results that are as close as possible to the observations. As the boundary conditions contain 72 values, which should be adjusted and how to adjust them can only be partially solved by adjusting them many times. The satisfied results are hard to acquire even gigantic efforts are done. Here, the automation of the treatment of the open boundary conditions is realized. The method is unique and superior to the traditional methods. It is emphasized that if the adjoint of equation is used, tedious and complicated mathematical deduction can be avoided. Therefore the adjoint of equation should attract much attention. 展开更多
关键词 数据同化 变分分析 伴随方法 潮汐 开边界条件
在线阅读 下载PDF
Assimilated Tidal Results of Tide Gauge and TOPEX/POSEIDON Data over the China Seas Using a Variational Adjoint Approach with a Nonlinear Numerical Model 被引量:13
15
作者 韩桂军 李威 +2 位作者 何忠杰 刘克修 马继瑞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期449-460,共12页
In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TO... In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of China's Mainland, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations. 展开更多
关键词 TIDES variational adjoint approach tidal gauges TOPEX/POSEIDON the China Seas
在线阅读 下载PDF
Nonlinear uncertainty quantification of the impact of geometric variability on compressor performance using an adjoint method 被引量:11
16
作者 Qian ZHANG Shenren XU +3 位作者 Xianjun YU Jiaxin LIU Dingxi WANG Xiuquan HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期17-21,共5页
Manufactured blades are inevitably different from their design intent,which leads to a deviation of the performance from the intended value.To quantify the associated performance uncertainty,many approaches have been ... Manufactured blades are inevitably different from their design intent,which leads to a deviation of the performance from the intended value.To quantify the associated performance uncertainty,many approaches have been developed.The traditional Monte Carlo method based on a Computational Fluid Dynamics solver(MC-CFD)for a three-dimensional compressor is prohibitively expensive.Existing alternatives to the MC-CFD,such as surrogate models and secondorder derivatives based on the adjoint method,can greatly reduce the computational cost.Nevertheless,they will encounter’the curse of dimensionality’except for the linear model based on the adjoint gradient(called MC-adj-linear).However,the MC-adj-linear model neglects the nonlinearity of the performance function.In this work,an improved method is proposed to circumvent the lowaccuracy problem of the MC-adj-linear without incurring the high cost of other alternative models.The method is applied to the study of the aerodynamic performance of an annular transonic compressor cascade,subject to prescribed geometric variability with industrial relevance.It is found that the proposed method achieves a significant accuracy improvement over the MC-adj-linear with low computational cost,showing the great potential for fast uncertainty quantification. 展开更多
关键词 adjoint method AERODYNAMICS COMPRESSOR MANUFACTURING Monte Carlo method NONLINEARITY Uncertainty quantification
原文传递
Aerodynamic optimization design for high pressure turbines based on the adjoint approach 被引量:6
17
作者 Chen Lei Chen Jiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期757-769,共13页
Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The object... Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection. 展开更多
关键词 adjoint method Aerodynamic design High pressure turbineOptimization design Objective function
原文传递
The Factorization of Adjoint Polynomials of E^G(i)-class Graphs and Chromatically Equivalence Analysis 被引量:15
18
作者 ZHANG Bing-ru YANG Ji-ming 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期376-383,共8页
Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ... Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements. 展开更多
关键词 chromatic polynomial adjoint polynomials FACTORIZATION chromatically equivalent graph structure characteristics
在线阅读 下载PDF
Estimation of eddy viscosity on the South China Sea shelf with adjoint assimilation method 被引量:4
19
作者 ZHANG Yanwei TIAN Jiwei XIE Lingling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第5期9-16,共8页
The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column. Ekman wind-driven current model and adjoint assimilation technique are used to ... The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column. Ekman wind-driven current model and adjoint assimilation technique are used to calculate the vertical profiles of eddy viscosity by fitting model results to the observation data. The data used in the paper include observed wind data and ADCP data obtained at Wenchang Oil Rig on the SCS (the South China Sea) shelf in August 2002. Different simulations under different wind conditions are analyzed to explore how the eddy viscosity develops with varying wind field. The results show that the eddy viscosity endured gradual variations in the range of 10^-3 -10^-2 m^2 /s during the periods of wind changes. The mean eddy viscosity undergoing strong wind could rise by about 25% as compared to the value under weak wind. 展开更多
关键词 the SCS eddy viscosity near-inertial Ekman Model adjoint assimilation
在线阅读 下载PDF
Adjoint-based Sensitivity Analysis of a Mesoscale Low on the Mei-yu Front and Its Implications for Adaptive Observation 被引量:4
20
作者 钟科 董佩明 +2 位作者 赵思雄 蔡其发 兰伟仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期435-448,共14页
An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after ve... An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically. 展开更多
关键词 adjoint sensitivity analysis singular vector adaptive observation mei-yu front mesoscale low
在线阅读 下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部