期刊文献+
共找到11,675篇文章
< 1 2 250 >
每页显示 20 50 100
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
1
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
2
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
3
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Investigation of hanging crosstie problem at bridge approaches:a train–track–bridge model coupled with discrete element method
4
作者 Zhongyi Liu Wenjing Li +2 位作者 Travis A.Shoemaker Erol Tutumluer Youssef M.A.Hashash 《Railway Engineering Science》 2025年第3期458-473,共16页
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio... Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations. 展开更多
关键词 Hanging crosstie Crosstie gap Transition zone model coupling Discrete element method Train-track model
在线阅读 下载PDF
A hybrid coupled model for the tropical Pacific constructed by integrating ROMS with a statistical atmospheric model
5
作者 Rong-Hua ZHANG Wenzhe ZHANG +4 位作者 Yang YU Yinnan LI Feng TIAN Chuan GAO Hongna WANG 《Journal of Oceanology and Limnology》 2025年第4期1037-1055,共19页
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi... Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific. 展开更多
关键词 Regional Ocean modeling System(ROMS) statistical atmospheric model hybrid coupled model El Niño-Southern Oscillation(ENSO) model evaluation tropical Pacific
在线阅读 下载PDF
A deep residual intelligent model for ENSO prediction by incorporating coupled model forecast data
6
作者 Chunyang Song Xuefeng Zhang +3 位作者 Xingrong Chen Hua Jiang Liang Zhang Yongyong Huang 《Acta Oceanologica Sinica》 2025年第8期133-142,共10页
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes... The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods. 展开更多
关键词 ENSO prediction deep learning dynamical coupled model data incorporating
在线阅读 下载PDF
A regional ocean–atmosphere coupled model using CMA-TRAMS and LICOM: Preliminary results for tropical cyclone gale prediction over the northern South China Sea
7
作者 Ling Huang Chunxia Liu +1 位作者 Yongqiang Yu Liwei Zou 《Atmospheric and Oceanic Science Letters》 2025年第2期58-62,共5页
This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and o... This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and ocean components of the coupled system are represented by the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS)and the LASG/IAP Climate system Ocean Model(LICOM),respectively.The Ocean Atmosphere Sea Ice Soil VersionH 3(OASIS3)software has been utilized for the exchange of momentum,heat,and freshwater fluxes between these two components.An assessment of the coupled model’s three-day predictions for five TCs’gales was conducted.Preliminary findings indicate that the predicted TC tracks show less sensitivity to oceanic influences than the predicted TC intensities.Significant improvement in predicting the surface TC gales has been achieved through coupling the ocean model.This improvement is attributed to the impact of the warmer ocean’s effect on TC intensification,counteracting the cooling effect of the cold wake.In summary,coupling has enhanced the model’s predictive capabilities for TC gales.A detailed assessment of the coupled model’s performance in predicting other tropical weather phenomena is forthcoming. 展开更多
关键词 TC gales Regional coupled ocean-atmosphere model Northern South China Sea
在线阅读 下载PDF
Employment of an Arctic sea-ice data assimilation scheme in the coupled climate system model FGOALS-f3-L and its preliminary results
8
作者 Yuyang Guo Yongqiang Yu Jiping Liu 《Atmospheric and Oceanic Science Letters》 2025年第4期27-34,共8页
Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this st... Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this study,a Localized Error Subspace Transform Kalman Filter is employed in a coupled climate system model(the Flexible Global Ocean–Atmosphere–Land System Model,version f3-L(FGOALS-f3-L))to assimilate sea-ice concentration(SIC)and sea-ice thickness(SIT)data for melting-season ice predictions.The scheme is applied through the following steps:(1)initialization for generating initial ensembles;(2)analysis for assimilating observed data;(3)adoption for dividing ice states into five thickness categories;(4)forecast for evolving the model;(5)resampling for updating model uncertainties.Several experiments were conducted to examine its results and impacts.Compared with the control experiment,the continuous assimilation experiments(CTNs)indicate assimilations improve model SICs and SITs persistently and generate realistic initials.Assimilating SIC+SIT data better corrects overestimated model SITs spatially than when only assimilating SIC data.The continuous assimilation restart experiments indicate the initials from the CTNs correct the overestimated marginal SICs and overall SITs remarkably well,as well as the cold biases in the oceanic and atmospheric models.The initials with SIC+SIT assimilated show more reasonable spatial improvements.Nevertheless,the SICs in the central Arctic undergo abnormal summer reductions,which is probably because overestimated SITs are reduced in the initials but the strong seasonal cycle(summer melting)biases are unchanged.Therefore,since systematic biases are complicated in a coupled system,for FGOALS-f3-L to make better ice predictions,oceanic and atmospheric assimilations are expected required. 展开更多
关键词 Arctic sea ice Data assimilation coupled climate system model FGOALS-f3-L
在线阅读 下载PDF
Fully coupled THM constitutive model for clay rocks:Formulation and application to laboratory tests
9
作者 Fei Song Antonio Gens +2 位作者 Stefano Collico Dragan Grgic Huaning Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期1941-1960,共20页
This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening aft... This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems. 展开更多
关键词 Hard soil Soft rocks Unsaturated/saturated conditions THM coupling processes Thermal pressurization Constitutive model
在线阅读 下载PDF
Landslide susceptibility assessment based on an interpretable coupled FR-RF model:A case study of Longyan City,Fujian Province,Southeast China
10
作者 Zong-yue Lu Gen-yuan Liu +5 位作者 Xi-dong Zhao Kang Sun Yan-si Chen Zhi-hong Song Kai Xue Ming-shan Yang 《China Geology》 2025年第2期281-294,共14页
To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information ... To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information System(GIS)with integrated spatial data,a frequency ratio(FR)model,and a random forest(RF)model(also referred to as the coupled FR-RF model).The coupled FR-RF model was constructed based on the analysis of nine influential factors,including distance from roads,normalized difference vegetation index(NDVI),and slope.The performance of the coupled FR-RF model was assessed using metrics such as Receiver Operating Characteristic(ROC)and Precision-Recall(PR)curves,yielding Area Under the Curve(AUC)values of 0.93 and 0.95,which indicate high predictive accuracy and reliability for geological hazard forecasting.Based on the model predictions,five susceptibility levels were determined in the study area,providing crucial spatial information for geologic hazard prevention and control.The contributions of various influential factors to landslide susceptibility were determined using SHapley Additive exPlanations(SHAP)analysis and the Gini index,enhancing the model interpretability and transparency.Additionally,this study discussed the limitations of the coupled FR-RF model and the prospects for its improvement using new technologies.This study provides an innovative method and theoretical support for geologic hazard prediction and management,holding promising prospects for application. 展开更多
关键词 Machine learning Landslide susceptibility assessment Geographic Information System(GIS) coupled FR-RF model Random forest INTERPRETABILITY SHapley Additive exPlanations Geological disater prevention engineering Longyan
在线阅读 下载PDF
Model Design and Simulation of an 80 kW Capacitor Coupled Substation Derived from a 132 kV Transmission Line
11
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Open Journal of Modelling and Simulation》 2025年第1期1-19,共19页
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li... The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods. 展开更多
关键词 Capacitor-coupled Substation Transmission Line-linked Capacitor-coupled Substation Capacitor-coupled Substation Simulation MICROGRIDS Rural Electrification Power System modeling
在线阅读 下载PDF
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
12
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation 被引量:2
13
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
在线阅读 下载PDF
Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China's Coastal Zone Based on Coupled SD-FLUS Model 被引量:2
14
作者 HOU Xiyong SONG Baiyuan +2 位作者 ZHANG Xueying WANG Xiaoli LI Dong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期579-598,共20页
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang... Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions. 展开更多
关键词 land use and land cover change(LUCC) multi-scenario simulation system dynamic-future land use simulation(SD-FLUS)model SSP-RCP scenarios model coupling China's coastal zone
在线阅读 下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
15
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
在线阅读 下载PDF
Failure microscopic mechanism and damage constitutive model of dolomite under water-rock coupling interaction
16
作者 SUN Xiao-ming ZHANG Jing +6 位作者 SHI Fu-kun HE Lin-sen ZHANG Yong MIAO Cheng-yu DING Jia-xu MA Li-sha ZHAO Hao-ze 《Journal of Central South University》 2025年第4期1431-1446,共16页
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev... To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability. 展开更多
关键词 water-rock coupling DOLOMITE constitutive model MICROSTRUCTURE loading-unloading cycle
在线阅读 下载PDF
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
17
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex Computational modeling coupling relationships DEPRESSION Emotion and cognition
原文传递
Iterative solution and numerical analysis of vehicle-track-bridge nonlinear coupled vibration considering viscoelasticity of rail pads
18
作者 CUI Wei-tao GAO Liang +3 位作者 XIAO Hong MIAO Shuai-jie NIU Zhen-yu XIAO Yi-xiong 《Journal of Central South University》 2025年第7期2750-2765,共16页
To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ... To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations. 展开更多
关键词 high-speed railway rail pads fractional derivative vehicle-track-bridge coupled model iterative algorithm
在线阅读 下载PDF
Mechanical properties and failure mechanisms of coarse carbonaceous mudstone particles as highway embankment filler under coupled temperature-moisture conditions
19
作者 ZENG Ling LUO Jintao +7 位作者 ZHANG Hongri GAO Qianfeng BIAN Hanbing LI Junyan ZHANG Guangming YU Huicong SONG Jianping LI Youjun 《Journal of Mountain Science》 2025年第10期3818-3834,共17页
Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remai... Carbonaceous mudstone is a potential embankment filler in mountainous regions with limited high-quality materials;however,its engineering performance in highway embankments under complex environmental conditions remains poorly understood.This study aimed to investigate the mechanical properties and failure mechanisms of carbonaceous mudstone filler under different temperature-moisture coupled conditions.Triaxial shear tests were conducted under four temperaturemoisture coupled conditions:dry-heat to dry-cold(DHDC),wet-cold to wet-heat(WCWH),dry-cold to wet-heat(DCWH),and dry-heat to wet-cold(DHWC).The effects of these conditions on the strength characteristics,relative breakage ratio,failure mode,and microscopic morphology were examined.A segmented prediction model based on the DuncanChang model was applied to validate the experimental results under the DHWC condition.The failure mechanisms under different conditions were also analyzed.The results indicate that the degradation of carbonaceous mudstone increases in the following order:DHDC,WCWH,DCWH,and DHWC.Under the DHDC condition,the stress-strain curves exhibit strain-softening behavior,while other conditions show strain-hardening behavior,with peak deviatoric stress occurring at 2%and 4%axial strains,respectively.The shear strength decreases by up to 40%under the DHWC condition but remains nearly unchanged under the DHDC condition,showing a positive correlation with particle breakage.As the number of cycles increases,the failure surfaces gradually move downward.Higher confining pressure shifts failure mode from shear failure to shear slip or localized compression,and eventually to overall compression or expansion failure.The modified Duncan-Chang model accurately predicts the experimental results.These findings provide important guidance for the application of carbonaceous mudstone filler in highway embankment construction in humid mountainous regions. 展开更多
关键词 Carbonaceous mudstone Temperature-moisture coupled conditions Mechanical properties Particle breakage Modified Duncan-Chang model
原文传递
New insights on generalized heat conduction and thermoelastic coupling models
20
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部