期刊文献+
共找到280,881篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于自适应窗口的改进AD-Census立体匹配算法
1
作者 叶娟 张宏 《电脑与信息技术》 2025年第3期1-5,22,共6页
传统的AD-Census立体匹配算法在计算Census代价时使用固定的矩形窗口和权重,导致在实际应用时自适应性不强且在弱纹理区域的匹配误差较大。为解决这一问题,提出了一种改进的AD-Census立体匹配算法,该算法在计算Census代价时采用自适应... 传统的AD-Census立体匹配算法在计算Census代价时使用固定的矩形窗口和权重,导致在实际应用时自适应性不强且在弱纹理区域的匹配误差较大。为解决这一问题,提出了一种改进的AD-Census立体匹配算法,该算法在计算Census代价时采用自适应窗口和权重的策略。通过比较匹配点与周围像素的灰度差异,并根据相似灰度像素的数量来评估该点是否处于弱纹理区域,从而动态调整Census变换的窗口形状和融合权重。该方法在纹理较弱的情况下更好地利用了周围的纹理信息,可以减少误匹配情况的发生。实验结果使用Middlebury第3代双目立体匹配评估平台进行验证,结果显示,与传统的AD-Census立体匹配算法相比,新选择的4组图像对的所有像素点的平均误差减小了53%,非遮挡区域的平均误差减小了13.5%,由此可见,改进后的算法在弱纹理区域能够表现出更好的效果,性能得到了提升,并且提高了匹配的准确性。 展开更多
关键词 立体匹配 自适应窗口 ad-census 弱纹理区域
在线阅读 下载PDF
基于多特征AD-Census变换的立体匹配算法
2
作者 陆雨薇 常修源 +1 位作者 龙辉 覃高杰 《信息技术与信息化》 2025年第6期6-10,共5页
立体匹配算法的误匹配率一直是影响双目立体视觉精度的关键因素之一。为提高匹配的准确性和鲁棒性,文章提出了一种自适应多特征融合的立体匹配算法。首先,在代价计算阶段,结合图像区域的纹理复杂度,自适应调整Census变换窗口的大小,从... 立体匹配算法的误匹配率一直是影响双目立体视觉精度的关键因素之一。为提高匹配的准确性和鲁棒性,文章提出了一种自适应多特征融合的立体匹配算法。首先,在代价计算阶段,结合图像区域的纹理复杂度,自适应调整Census变换窗口的大小,从而增强算法在不同复杂区域中的适应性。此外,在传统AD和Census变换特征的基础上,引入基于梯度信息的Census变换,并结合区域纹理信息计算特征融合权重,从而构建更加精确和可靠的匹配代价。其次,在代价聚合阶段,采用基于距离权重的十字交叉聚合策略,对视差值进行有效的重分配,减少误匹配的发生。并利用赢家通吃(WTA)算法获取初始视差后,通过左右一致性检测和亚像素精细化技术对视差结果进行后处理优化,以获得更加精确的视差图。实验结果表明,在Middlebury标准测试数据集中,所提算法在非遮挡区域和全区域的误匹配率分别为8.02%和11.15%,并且在实际三维测量中,最大误差为0.242%。实验结果验证了所提算法的有效性和可靠性。 展开更多
关键词 机器视觉 立体匹配 自适应权重 ad-census 十字交叉法
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
3
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
基于自适应权重AD-Census变换的双目立体匹配 被引量:36
4
作者 王云峰 吴炜 +1 位作者 余小亮 王安然 《工程科学与技术》 EI CAS CSCD 北大核心 2018年第4期153-160,共8页
针对AD-Census变换采用固定权重将AD变换代价与Census变换代价合成的双目立体匹配代价无法体现像素点区域特征的问题,提出一种基于自适应权重AD-Census变换的双目立体匹配算法。算法首先通过增加相邻像素点的灰度差阈值条件改善十字支... 针对AD-Census变换采用固定权重将AD变换代价与Census变换代价合成的双目立体匹配代价无法体现像素点区域特征的问题,提出一种基于自适应权重AD-Census变换的双目立体匹配算法。算法首先通过增加相邻像素点的灰度差阈值条件改善十字支撑自适应窗口;然后以每个像素点的十字支撑自适应窗口的最短臂长为自变量,利用指数形式的函数,进行AD变换代价与Census变换代价合成权重的自适应设置。由于像素点十字支撑自适应窗口的最短臂长能够反映像素点的区域特性,因此自适应设置的权重大小与像素点的区域特性直接相关,计算图像边缘区域像素点的匹配代价时,AD变换的权重大;计算平滑区域像素点的匹配代价时,Census变换的权重大。Middlebury第3代双目立体匹配评估平台的结果显示,基于自适应权重AD-Census变换的双目立体匹配性能与基于AD-Census变换的双目立体匹配性能相比,所有图像集的全部像素点的视差平均误差减小了25%,非遮挡像素点的视差平均误差减小了20%,性能得到了提升;平台上包括Adir在内的多个图像集的匹配结果表明基于自适应权重AD-Census变换的双目立体匹配更适合含纹理丰富、存在重复区域的图像。 展开更多
关键词 立体匹配 自适应权重 ad-census 十字支撑 匹配代价
在线阅读 下载PDF
基于AD-Census代价及目标检测的吊车防碰线技术 被引量:7
5
作者 方春华 陆杰炜 +3 位作者 董晓虎 程绳 吴军 申万科 《电子测量技术》 北大核心 2022年第13期141-145,共5页
针对大型吊车在高压输电线路下施工易发生碰线事故的问题,提出一种基于目标检测和双目测距的方法来对风险进行管控。所提方法首先使用YOLOv4算法对输电线进行检测,然后考虑到双目相机处于不同拍摄角度会导致图像存在亮度差异的情况,提... 针对大型吊车在高压输电线路下施工易发生碰线事故的问题,提出一种基于目标检测和双目测距的方法来对风险进行管控。所提方法首先使用YOLOv4算法对输电线进行检测,然后考虑到双目相机处于不同拍摄角度会导致图像存在亮度差异的情况,提出了基于AD-Census代价的SGBM双目测距算法对输电线进行测距。最后通过实验验证了所提方法的有效性。结果表明,该方法在检测输电线时平均置信度能够达到81.67%,在5~8 m以内测量误差能够控制在0.4 m以内,平均检测测距用时50 ms。相比原始双目测距算法,改进算法的测量精度有一定提升。所提方法能够准确测量吊臂与输电线间的距离,对防止吊车碰线具有一定意义。 展开更多
关键词 输电线路 目标检测 ad-census代价 双目测距
原文传递
基于截断AD-Census函数的立体匹配算法 被引量:1
6
作者 张健 覃翠 《电子器件》 CAS 北大核心 2023年第1期109-114,共6页
双目视觉技术是重要的立体成像技术之一,该技术的核心是计算匹配像素点之间的视差值,而这种计算依赖于代价函数的设计。其中Absolute Difference Census(AD-Census)函数作为代价函数是常用的方法,但该方法受权重系数的影响较大。为了有... 双目视觉技术是重要的立体成像技术之一,该技术的核心是计算匹配像素点之间的视差值,而这种计算依赖于代价函数的设计。其中Absolute Difference Census(AD-Census)函数作为代价函数是常用的方法,但该方法受权重系数的影响较大。为了有效提高AD-Census函数的匹配精度,提出向AD-Census函数中添加截断参数以改进其匹配效果,保证了代价聚合时像素的绝对值和梯度不会出现因其中一个值较大,而导致另一个值的影响被忽略的情况出现,从而提高匹配精度,与传统的AD-Census函数相比失配率可以降低6%以上。 展开更多
关键词 截断ad-census函数 立体匹配 代价函数 匹配精度 误匹配率
在线阅读 下载PDF
基于AD-Census的双目立体匹配改进算法 被引量:1
7
作者 车德福 尚祥祥 +1 位作者 王夺 孙彦恩 《东北大学学报(自然科学版)》 CSCD 北大核心 2024年第11期1621-1628,共8页
针对绝对值之差(absolute difference,AD)-Census等传统双目立体匹配算法在低纹理区域、重复纹理区域匹配精度低的问题,提出一种融合大尺度窗口信息与曼哈顿距离的双目立体匹配算法.使用改进的绝对误差和(sum of absolute differences,S... 针对绝对值之差(absolute difference,AD)-Census等传统双目立体匹配算法在低纹理区域、重复纹理区域匹配精度低的问题,提出一种融合大尺度窗口信息与曼哈顿距离的双目立体匹配算法.使用改进的绝对误差和(sum of absolute differences,SAD)代价与多灰度阈值Census代价计算得到融合代价,根据邻域像素与中心点的曼哈顿距离赋予权重,减少边缘像素对代价的影响.通过大尺度的窗口提取到的差异信息对融合代价进行筛选过滤,改善了算法在重复纹理区域、灰度相似区域精度较低的问题.与传统的AD-Census算法相比,该算法误匹配率减少约18%,对算法进行图形处理器(graphic processing unit,GPU)移植,使得算法在不同尺度分辨率的图像上运行速度提升1~2个数量级,满足双目立体匹配算法快速准确的需求. 展开更多
关键词 双目立体视觉 立体匹配 ad-census 绝对误差和
在线阅读 下载PDF
一种改进的AD-Census立体匹配算法 被引量:1
8
作者 王群伟 赖松林 +1 位作者 周海芳 程文帆 《有线电视技术》 2016年第3期41-44,共4页
本文提出了一种基于加权支持域的AD-Census立体匹配算法。该算法结合SAD和Census变换的匹配代价的特点来替代传统的匹配代价,考虑到图像的纹理结构和像素信息,可有效提高算法的匹配精度和抗干扰性;采用加权支持域的方法来替代传统的窗... 本文提出了一种基于加权支持域的AD-Census立体匹配算法。该算法结合SAD和Census变换的匹配代价的特点来替代传统的匹配代价,考虑到图像的纹理结构和像素信息,可有效提高算法的匹配精度和抗干扰性;采用加权支持域的方法来替代传统的窗口累积法,同时考虑了局部区域的相似度和相近度,可有效改善深度不连续区域的匹配精度。实验结果表明,该算法计算简单,鲁棒性好,匹配精度高。 展开更多
关键词 立体匹配 加权支持域 ad-census 算法
在线阅读 下载PDF
结合多路梯度与重排序的AD-Census立体匹配算法
9
作者 林森 刘傲 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期161-168,共8页
针对局部立体匹配算法在深度不连续和弱纹理区域匹配精度低,且容易受到噪声干扰的问题,提出一种结合多路梯度与重排序的AD-Census立体匹配算法。对传统的AD-Census变换进行改进,重排序不同尺度变换窗口中的像素,取中值作为中心像素点计... 针对局部立体匹配算法在深度不连续和弱纹理区域匹配精度低,且容易受到噪声干扰的问题,提出一种结合多路梯度与重排序的AD-Census立体匹配算法。对传统的AD-Census变换进行改进,重排序不同尺度变换窗口中的像素,取中值作为中心像素点计算Hamming距离,使其对噪声具有更强的鲁棒性,并将八方向梯度信息相融合进行代价计算以增强可靠性;采用十字交叉域和4路径扫描线优化进行代价聚合,提高匹配精度;采用赢家通吃法则进行视差计算,同时引入多步骤视差优化策略得到最终的视差图。在Middlebury测试平台提供的标准立体图像上,所提算法的平均误匹配率低至4.62%,与经典和新颖算法相比,匹配精度明显提高,具有更强的稳健性。 展开更多
关键词 双目视觉 立体匹配 ad-census 多路梯度
在线阅读 下载PDF
改进型AD-Census变换在双目测距中的应用研究 被引量:1
10
作者 闫小宇 陆凡凡 葛芦生 《软件导刊》 2022年第8期138-143,共6页
针对传统的Census变换过度依赖中心像素点,且随着支持窗口的增大其代价计算耗时也随之增加的问题,提出一种改进型AD-Census变换算法,并将其应用于双目测距系统。改进型AD-Census变换在中心像素周围选取等距的8个像素点进行两两比较得到... 针对传统的Census变换过度依赖中心像素点,且随着支持窗口的增大其代价计算耗时也随之增加的问题,提出一种改进型AD-Census变换算法,并将其应用于双目测距系统。改进型AD-Census变换在中心像素周围选取等距的8个像素点进行两两比较得到一个字节的比特串,将左右视场中对应的比特串进行异或得到Hamming距离作为对应窗口的初始代价,得到对应的视差图,最终计算目标的距离。由耗时对比实验可知,该算法对低像素图形和高像素图形代价计算时耗分别稳定在0.2s、6.8s左右,是传统AD-Census变换耗时的近1/3。在测距实验中采用该算法测得被测物距离摄像头光心为800~3 000mm时,实测和实际距离相对误差百分比绝对值小于5%。该算法不仅在立体匹配速度上有很大提升,而且该算法的精度满足测距实验要求。 展开更多
关键词 计算机视觉 ad-census变换 立体匹配 双目测距
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
14
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
16
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
17
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
18
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
19
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
20
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部