An actin gene (CfACT1) was cloned by using RT-PCR, 3’and 5’RACE from hemocytes of the sea scallop Chlamys farreri. The full length of the transcript is 1 535 bp, which contains a long 3’ un-translated region of 436...An actin gene (CfACT1) was cloned by using RT-PCR, 3’and 5’RACE from hemocytes of the sea scallop Chlamys farreri. The full length of the transcript is 1 535 bp, which contains a long 3’ un-translated region of 436bp and 59bp of a 5’ un-translated sequence. The open reading frame encodes a polypeptide of 376 amino acids. Sequence comparisons indicated that CfACT1 is more closely related to vertebrate cytoplasmic actins than muscle types. Phylogenetic analysis showed that molluscan actins could be generally divided into two categories: muscle and cytoplasmic, although both are similar to vertebrate cytoplasmic actins. It was also inferred that different isotypes existed in muscle or cytoplasma in mollusks. The genomic sequence of CfACT1 was cloned and sequenced. Only one intron was detected: it was located between codons 42 and 43 and different from vertebrate actin genes.展开更多
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
BACKGROUND:The present study aims to investigate whether mannitol facilitates central nervous system(CNS) entry of vancomycin and alleviates methicillin-resistant Staphylococcus aureus(MRSA)intracranial infection.METH...BACKGROUND:The present study aims to investigate whether mannitol facilitates central nervous system(CNS) entry of vancomycin and alleviates methicillin-resistant Staphylococcus aureus(MRSA)intracranial infection.METHODS:Blood-brain barrier(BBB) permeability was assessed by measuring the concentration of sodium fl uorescein(NaF) in the brain tissues of rats and fl uorescein isothiocyanate-dextran(FITC-dextran)in a single-cell layer model.Neutrophil infiltration in the brain tissue,inflammatory cytokine levels in the serum,neurological function,and 7-day survival rates were used to evaluate therapeutic eff ects of mannitol and vancomycin in MRSA-infected rats.Syndecan-1 and fi lamentous actin(F-actin) levels were measured,and the relationship between F-actin and the endothelial glycocalyx layer(EGL) was explored via the depolymerization agent cytochalasin D and the polymerization agent jasplakinolide.RESULTS:Following mannitol administration,the NaF and vancomycin concentrations in the brain tissue increased rapidly within 5 min and remained stable for 30 min,indicating that mannitol increased BBB permeability for 30 min.In vitro,mannitol treatment led to significantly greater FITC-dextran permeation through a single-cell layer compared to controls.In the MRSA intracranial infection model,rats treated with mannitol and vancomycin simultaneously presented less infl ammation,improved neurological function,and increased 7-day survival rate compared to rats treated with vancomycin and mannitol at 10-hour intervals.Further experiments revealed that mannitol decreased the expression of syndecan-1 in brain tissues,which was confi rmed by in vitro experiments showing that mannitol signifi cantly decreased syndecan-1 via F-actin depolymerization.CONCLUSION:Mannitol may enhance the therapeutic effi cacy of vancomycin against intracranial MRSA infection by decreasing the endothelial glycocalyx of the BBB via F-actin depolymerization.展开更多
Cell division is a fundamental biological process in which a parent cell divides into two daughter cells.The cell cortex,a thin layer primarily composed of actin filaments and myosin motors beneath the plasma membrane...Cell division is a fundamental biological process in which a parent cell divides into two daughter cells.The cell cortex,a thin layer primarily composed of actin filaments and myosin motors beneath the plasma membrane,plays a critical role in ensuring proper cell division.In this study,we apply a hydrodynamic model to describe the actin cortex as an active nematic surface,incorporating orientational order arising from actin filament alignment and anisotropic active stress produced by myosin motors.By analyzing the linearized dynamics,we investigate how shape,flow,and stress regulators evolve over time when the surface deviates slightly from a sphere.Our findings reveal that the active alignment of actin filaments,often overlooked in previous studies,is crucial for successful division.Furthermore,we demonstrate that a cortical chiral flow naturally emerges as a consequence of this active alignment.Overall,our results provide a mechanistic explanation for key phenomena observed during cell division,offering new insights into the role of active stress and filament alignment in cortical dynamics.展开更多
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
Background One of the main roles of the intestinal mucosa is to protect against environmental hazards.Supple-mentation of xylo-oligosaccharides(XOS)is known to selectively stimulate the growth of beneficial intestinal...Background One of the main roles of the intestinal mucosa is to protect against environmental hazards.Supple-mentation of xylo-oligosaccharides(XOS)is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens.XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions.The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction(AXRF)supplementation on gut func-tion and epithelial integrity in broiler chickens.Methods A total of 128 broiler chickens(Ross 308)were assigned into one of two different dietary treatments for a period of 42 d:1)control diet consisting of a corn/soybean meal-based diet;or 2)a control diet supplemented with 0.5%XOS and 1%AXRF.Each treatment was randomly distributed across 8 pens(n=8)with 8 chickens each.Feed intake and body weight were recorded weekly.On d 42,one male chicken per pen was selected based on aver-age weight and euthanized,jejunum samples were collected for proteomics analysis.Results Dietary XOS/AXRF supplementation improved feed efficiency(P<0.05)from d 1 to 42 compared to the con-trol group.Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 dif-ferentially abundant proteins(DAP)(Padj<0.00001)in supplemented chickens compared to the non-supplemented group.In the jejunum,the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue(e.g.,inhibition of glycolysis and tricarboxylic acid cycle pathways).In addition,DAP were associated with decreased epithelial cell differentiation,and migration by reducing the actin polymerization pathway.Put-ting the two main pathways together,XOS/AXRF supplementation may decrease around 19%the energy required for the maintenance of the gastrointestinal tract.Conclusions Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation(hence,turnover),actin polymerization,and consequently energy requirement for maintenance of the jejunum of broiler chickens.展开更多
Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effe...Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.展开更多
BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-rel...BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-related protein scinderin(SCIN)has been reported to be closely related to tumor cell migration and invasion in several cancers.AIM To investigate the role and mechanism of SCIN in glioma.METHODS The expression and clinical significance of SCIN in glioma were analyzed based on public databases.SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting.Gene silencing was performed using short hairpin RNA transfection.Cell viability,migration,and invasion were assessed using cell counting kit 8 assay,wound healing,and Matrigel invasion assays,respectively.F-actin cytoskeleton organization was assessed using F-actin staining.RESULTS SCIN expression was significantly elevated in glioma,and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase.Furthermore,SCIN-deficient cells exhibited decreased proliferation,migration,and invasion in U87 and U251 cells.Moreover,knockdown of SCIN inhibited the RhoA/focal adhesion kinase(FAK)signaling to promote F-actin depolymerization in U87 and U251 cells.CONCLUSION SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling,thereby promoting the migration and invasion of glioma cells.This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.展开更多
Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated ann...Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated annually in the United States. 1 in 5 Americans and 2 in 3 Australians develop skin cancer by the age of 70 years and in Australia it is the most expensive, amassing $1.5 billion, to treat cancers. Non-melanoma skin cancers are often self-detected and are usually removed by various means in doctors’ surgeries. Mohs micrographic surgery is acclaimed to be the gold standard for the treatment of skin cancer. However, a novel microscopic molecular-cellular non-invasive topical therapy described in this article, challenges the status of Mohs procedure for being the acclaimed gold standard.展开更多
Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear f...Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.展开更多
Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formatio...Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb^(−/−) embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.展开更多
Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for...Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for information processing in the nervous system.Once dendritic development is aberrantly compromised or damaged,it may lead to abnormal connectivity of the neural network,affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders.Research on the regulation of dendritic developmental processes has flourished,and much progress is now being made in its regulatory mechanisms.Noteworthily,dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone,requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them.Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development,with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly.In this review,we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites.We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.展开更多
In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic...In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic steatohepatitis(NASH).The authors found that MXS treatment mitigated hepatic steatosis and inflam-mation in the NASH model,as evidenced by the reduction in lipid droplets(LDs),fibrosis markers and lipogenic factors.Interestingly,these hepatoprotective effects were associated with androgen upregulation(based on metabolomics analysis of male steroid hormone metabolites),adenosine 5’-monophosphate-activated protein kinase(AMPK)activation,and restoration of phosphatase and tensin homolog(PTEN)expression.However,the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model,and androgen upregulation,AMPK activation,and restoration of PTEN expression.This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model.As a perspective,we propose additional mechanisms(such as autophagy/lipophagy activation in hepatocytes)for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model.A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.展开更多
The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-inv...The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-invasive treatments like Curaderm have been developed, leading to improved quality of life for patients. Excipients, previously considered inactive ingredients, play a crucial role in enhancing the performance of topical formulations. The development of Curaderm emphasizes the importance of understanding the interactions between active ingredients, excipients, and the biological system to create effective and affordable pharmaceutical formulations. The systematic approach taken in the development of Curaderm, starting from the observation of the anticancer activity of natural solasodine glycosides and progressing through toxicological and efficacy studies in cell culture, animals, and humans, has provided insights into the pharmacokinetics and pharmacodynamics of solasodine glycosides. It is crucial to determine these pharmacological parameters within the skin’s biological system for maximal effectiveness and cost-effectiveness of a skin cancer treatment. Curaderm, as a topical treatment for nonmelanoma skin cancer, offers benefits beyond those obtained from other topical treatments, providing hope for improved quality of life for patients.展开更多
Glioma is one of the most common primary intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event in tumor cell migration.Scinderin(SCIN),an actin ...Glioma is one of the most common primary intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event in tumor cell migration.Scinderin(SCIN),an actin severing and capping protein that regulates the actin cytoskeleton,is involved in the prolif-eration and migration of certain cancer cells.However,its biological role and molecular mechanism in glioma remain unclear.Lin et al explored the role and mechanism of SCIN in gliomas.The results showed that SCIN mechanically affected cytoskeleton remodeling and inhibited the formation of lamellipodia via RhoA/FAK signaling pathway.This study identifies the cancer-promoting role of SCIN and provides a potential therapeutic target for SCIN in glioma treatment.展开更多
Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties ...Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.展开更多
基金Supported by the National Basic Research Program of China (973 Program, No. G1999012012)the Key Laboratory of Mariculture, Ministry of Education (No. 2004024)
文摘An actin gene (CfACT1) was cloned by using RT-PCR, 3’and 5’RACE from hemocytes of the sea scallop Chlamys farreri. The full length of the transcript is 1 535 bp, which contains a long 3’ un-translated region of 436bp and 59bp of a 5’ un-translated sequence. The open reading frame encodes a polypeptide of 376 amino acids. Sequence comparisons indicated that CfACT1 is more closely related to vertebrate cytoplasmic actins than muscle types. Phylogenetic analysis showed that molluscan actins could be generally divided into two categories: muscle and cytoplasmic, although both are similar to vertebrate cytoplasmic actins. It was also inferred that different isotypes existed in muscle or cytoplasma in mollusks. The genomic sequence of CfACT1 was cloned and sequenced. Only one intron was detected: it was located between codons 42 and 43 and different from vertebrate actin genes.
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
基金supported by the National Natural Science Foundation for Young Scientists of China (grant no.2002074)the Natural Science Foundation of Guangdong Province(2023A1515010267, 2023A1515012665, 2024A1515010073)+1 种基金the China International Medical Foundation Cerebrovascular Disease Youth Innovation Fund (Z-2016-20-2201)the Medical Leading Talents Fund of Guangdong Province (KJ012019430)。
文摘BACKGROUND:The present study aims to investigate whether mannitol facilitates central nervous system(CNS) entry of vancomycin and alleviates methicillin-resistant Staphylococcus aureus(MRSA)intracranial infection.METHODS:Blood-brain barrier(BBB) permeability was assessed by measuring the concentration of sodium fl uorescein(NaF) in the brain tissues of rats and fl uorescein isothiocyanate-dextran(FITC-dextran)in a single-cell layer model.Neutrophil infiltration in the brain tissue,inflammatory cytokine levels in the serum,neurological function,and 7-day survival rates were used to evaluate therapeutic eff ects of mannitol and vancomycin in MRSA-infected rats.Syndecan-1 and fi lamentous actin(F-actin) levels were measured,and the relationship between F-actin and the endothelial glycocalyx layer(EGL) was explored via the depolymerization agent cytochalasin D and the polymerization agent jasplakinolide.RESULTS:Following mannitol administration,the NaF and vancomycin concentrations in the brain tissue increased rapidly within 5 min and remained stable for 30 min,indicating that mannitol increased BBB permeability for 30 min.In vitro,mannitol treatment led to significantly greater FITC-dextran permeation through a single-cell layer compared to controls.In the MRSA intracranial infection model,rats treated with mannitol and vancomycin simultaneously presented less infl ammation,improved neurological function,and increased 7-day survival rate compared to rats treated with vancomycin and mannitol at 10-hour intervals.Further experiments revealed that mannitol decreased the expression of syndecan-1 in brain tissues,which was confi rmed by in vitro experiments showing that mannitol signifi cantly decreased syndecan-1 via F-actin depolymerization.CONCLUSION:Mannitol may enhance the therapeutic effi cacy of vancomycin against intracranial MRSA infection by decreasing the endothelial glycocalyx of the BBB via F-actin depolymerization.
基金support from the National Nat-ural Science Foundation of China(Grant No.12474199)the Fundamental Research Funds for Central Universities of China(Grant No.20720240144),and 111 Project(B16029).
文摘Cell division is a fundamental biological process in which a parent cell divides into two daughter cells.The cell cortex,a thin layer primarily composed of actin filaments and myosin motors beneath the plasma membrane,plays a critical role in ensuring proper cell division.In this study,we apply a hydrodynamic model to describe the actin cortex as an active nematic surface,incorporating orientational order arising from actin filament alignment and anisotropic active stress produced by myosin motors.By analyzing the linearized dynamics,we investigate how shape,flow,and stress regulators evolve over time when the surface deviates slightly from a sphere.Our findings reveal that the active alignment of actin filaments,often overlooked in previous studies,is crucial for successful division.Furthermore,we demonstrate that a cortical chiral flow naturally emerges as a consequence of this active alignment.Overall,our results provide a mechanistic explanation for key phenomena observed during cell division,offering new insights into the role of active stress and filament alignment in cortical dynamics.
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
文摘Background One of the main roles of the intestinal mucosa is to protect against environmental hazards.Supple-mentation of xylo-oligosaccharides(XOS)is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens.XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions.The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction(AXRF)supplementation on gut func-tion and epithelial integrity in broiler chickens.Methods A total of 128 broiler chickens(Ross 308)were assigned into one of two different dietary treatments for a period of 42 d:1)control diet consisting of a corn/soybean meal-based diet;or 2)a control diet supplemented with 0.5%XOS and 1%AXRF.Each treatment was randomly distributed across 8 pens(n=8)with 8 chickens each.Feed intake and body weight were recorded weekly.On d 42,one male chicken per pen was selected based on aver-age weight and euthanized,jejunum samples were collected for proteomics analysis.Results Dietary XOS/AXRF supplementation improved feed efficiency(P<0.05)from d 1 to 42 compared to the con-trol group.Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 dif-ferentially abundant proteins(DAP)(Padj<0.00001)in supplemented chickens compared to the non-supplemented group.In the jejunum,the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue(e.g.,inhibition of glycolysis and tricarboxylic acid cycle pathways).In addition,DAP were associated with decreased epithelial cell differentiation,and migration by reducing the actin polymerization pathway.Put-ting the two main pathways together,XOS/AXRF supplementation may decrease around 19%the energy required for the maintenance of the gastrointestinal tract.Conclusions Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation(hence,turnover),actin polymerization,and consequently energy requirement for maintenance of the jejunum of broiler chickens.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:82274603 and 82104946)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20210817)+3 种基金the Traditional Chinese Medicine Science and Technology Development Project of Jiangsu Province,China(Project code:QN202008)the Young Scientific and Technological Talents Uplift Project of Jiangsu Association of Integrated Traditional Chinese and Western Medicine,China(Grant No.:JSZXTJ-2024-A05)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.:KYCX21_3295)the Yangzhou University Graduate Student International Academic Exchange Special Fund Project,China.Thanks for the Graphical abstract drawn。
文摘Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.
文摘BACKGROUND Glioma is one of the most common intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event of tumor cell migration.The actin dynamics-related protein scinderin(SCIN)has been reported to be closely related to tumor cell migration and invasion in several cancers.AIM To investigate the role and mechanism of SCIN in glioma.METHODS The expression and clinical significance of SCIN in glioma were analyzed based on public databases.SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting.Gene silencing was performed using short hairpin RNA transfection.Cell viability,migration,and invasion were assessed using cell counting kit 8 assay,wound healing,and Matrigel invasion assays,respectively.F-actin cytoskeleton organization was assessed using F-actin staining.RESULTS SCIN expression was significantly elevated in glioma,and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase.Furthermore,SCIN-deficient cells exhibited decreased proliferation,migration,and invasion in U87 and U251 cells.Moreover,knockdown of SCIN inhibited the RhoA/focal adhesion kinase(FAK)signaling to promote F-actin depolymerization in U87 and U251 cells.CONCLUSION SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling,thereby promoting the migration and invasion of glioma cells.This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.
文摘Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated annually in the United States. 1 in 5 Americans and 2 in 3 Australians develop skin cancer by the age of 70 years and in Australia it is the most expensive, amassing $1.5 billion, to treat cancers. Non-melanoma skin cancers are often self-detected and are usually removed by various means in doctors’ surgeries. Mohs micrographic surgery is acclaimed to be the gold standard for the treatment of skin cancer. However, a novel microscopic molecular-cellular non-invasive topical therapy described in this article, challenges the status of Mohs procedure for being the acclaimed gold standard.
基金Project supported by the National Natural Science Foundation of China (Nos. 12025207 and 11872357)the Fundamental Research Funds for the Central Universities。
文摘Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.
基金supported by the National Natural Science Foundation of China(No.81870747,82170916,81900984,and 82001030)the Fundamental Research Funds for the Central Universities(PKU2022XGK001)+2 种基金Natural Science Foundation of Beijing Municipality(7182184)Xi'an“Science and Technology+”Action Plan-Medical Research Project(20YXYJ0010[1])the Fundamental Research Funds for the Central Universities(xzy012020110).
文摘Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb^(−/−) embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
基金supported by the National Natural Science Foundation of China(32100784)the Natural Science Foundation of Jiangsu Province(BK20221458)the Fundamental Research Funds for the Central Universities(also known as the Southeast University Zhishan Young Scholars Program,2242024RCB0031)。
文摘Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for information processing in the nervous system.Once dendritic development is aberrantly compromised or damaged,it may lead to abnormal connectivity of the neural network,affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders.Research on the regulation of dendritic developmental processes has flourished,and much progress is now being made in its regulatory mechanisms.Noteworthily,dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone,requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them.Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development,with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly.In this review,we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites.We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
文摘In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic steatohepatitis(NASH).The authors found that MXS treatment mitigated hepatic steatosis and inflam-mation in the NASH model,as evidenced by the reduction in lipid droplets(LDs),fibrosis markers and lipogenic factors.Interestingly,these hepatoprotective effects were associated with androgen upregulation(based on metabolomics analysis of male steroid hormone metabolites),adenosine 5’-monophosphate-activated protein kinase(AMPK)activation,and restoration of phosphatase and tensin homolog(PTEN)expression.However,the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model,and androgen upregulation,AMPK activation,and restoration of PTEN expression.This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model.As a perspective,we propose additional mechanisms(such as autophagy/lipophagy activation in hepatocytes)for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model.A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.
文摘The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-invasive treatments like Curaderm have been developed, leading to improved quality of life for patients. Excipients, previously considered inactive ingredients, play a crucial role in enhancing the performance of topical formulations. The development of Curaderm emphasizes the importance of understanding the interactions between active ingredients, excipients, and the biological system to create effective and affordable pharmaceutical formulations. The systematic approach taken in the development of Curaderm, starting from the observation of the anticancer activity of natural solasodine glycosides and progressing through toxicological and efficacy studies in cell culture, animals, and humans, has provided insights into the pharmacokinetics and pharmacodynamics of solasodine glycosides. It is crucial to determine these pharmacological parameters within the skin’s biological system for maximal effectiveness and cost-effectiveness of a skin cancer treatment. Curaderm, as a topical treatment for nonmelanoma skin cancer, offers benefits beyond those obtained from other topical treatments, providing hope for improved quality of life for patients.
文摘Glioma is one of the most common primary intracranial tumors,characterized by invasive growth and poor prognosis.Actin cytoskeletal rearrangement is an essential event in tumor cell migration.Scinderin(SCIN),an actin severing and capping protein that regulates the actin cytoskeleton,is involved in the prolif-eration and migration of certain cancer cells.However,its biological role and molecular mechanism in glioma remain unclear.Lin et al explored the role and mechanism of SCIN in gliomas.The results showed that SCIN mechanically affected cytoskeleton remodeling and inhibited the formation of lamellipodia via RhoA/FAK signaling pathway.This study identifies the cancer-promoting role of SCIN and provides a potential therapeutic target for SCIN in glioma treatment.
文摘Actin, a highly conserved protein, plays a dominant role in Non-small cell lung cancer (NSCLC). Late diagnosis and the aggressive nature of NSCLC pose a significant threat. Studying the clinic pathological properties of NSCLC proteins is a potential alternative for developing treatment strategies. Towards this, 35 downregulated actin cytoskeletal proteins on NSCLC prognosis and treatment were studied by examining their protein-protein interactions, gene ontology enrichment terms, and signaling pathways. Using PubMed, various proteins in NSCLC were identified. The protein-protein interactions and functional associations of these proteins were examined using the STRING database. The focal adhesion signaling pathway was selected from all available KEGG and Wiki pathways because of its role in regulating gene expression, facilitating cell movement and reproduction, and significantly impacting NSCLC. The protein-protein interaction network of the 35 downregulated actin cytoskeleton proteins revealed that ACTG1, ACTR2, ACTR3, ANXA2, ARPC4, FLNA, TLN1, CALD1, MYL6, MYH9, MYH10, TPM1, TPM3, TPM4, PFN1, IQGAP1, MSN, and ZXY exhibited the highest number of interactions. Whereas HSPB1, CTNNA1, KRT17, KRT7, FLNB, SEPT2, and TUBA1B displayed medium interactions, while UTRN, TUBA1B, and DUSP23 had relatively fewer interactions. It was discovered that focal adhesions are critical in connecting membrane receptors with the actin cytoskeleton. In addition, protein kinases, phosphatases, and adapter proteins were identified as key signaling molecules in this process, greatly influencing cell shape, motility, and gene expression. Our analysis shows that the focal adhesion pathway plays a crucial role in NSCLC and is essential for developing effective treatment strategies and improving patient outcomes.