A copper-catalyzedα-selective C–H trifluoromethylation of acrylamides with TMSCF3 is described.A wide range of arenes and heteroarenes at theβ-position of acrylamides are compatible with the reaction,affording the ...A copper-catalyzedα-selective C–H trifluoromethylation of acrylamides with TMSCF3 is described.A wide range of arenes and heteroarenes at theβ-position of acrylamides are compatible with the reaction,affording the corresponding(E)-trifluoromethylated products in moderate to good yields.The reaction proceeded fast and can be completed within 30 min.展开更多
A new classification of the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. 13C NMR and Raman studies of a se...A new classification of the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. 13C NMR and Raman studies of a series of polymeric samples of fullerene-grafted poly (acrylamide), which were prepared by systematic variation of concentration of fullerene and acrylamide, are described. 13C NMR spectral analysis of the polymeric samples showed a peak for fullerene at 143 δppm and for poly (acrylamide) between 170 and 180 δppm and Raman spectral analysis of the poly-meric samples gave the Raman band for fullerene between 1470 cm-1 and poly (acrylamide) at 2800 cm-1. The Tg value, obtained from DSC results, showed a high glass transition temperature at 100.94°C revealing the presence of fullerene in the polymeric matrix. TGA analysis shows that polymer is thermally stable up to 340°C.展开更多
Molecular modeling of acrylates (acrylamides) with D1 protein of Pisum sativum is presented. Studies show that the binding force mainly includes H-bond interaction, Van der Waals and π-ring stacking interaction. It w...Molecular modeling of acrylates (acrylamides) with D1 protein of Pisum sativum is presented. Studies show that the binding force mainly includes H-bond interaction, Van der Waals and π-ring stacking interaction. It was found that SER 268 in Dl protein might be an important binding site. It is important for high inhibitory activity of compounds whether an electronegative atom in alkyl of ester linkage could make H-bond interaction with SER 268 in Dl protein. Thus some new acrylates (acrylamides) were designed and synthesized, Bioassay indicated that these new compounds showed expected Hill reaction inhibitory activity.展开更多
The electron-withdrawing groups (EWGs) in the electrophilic alkenes employed in the Michael addition reaction are almost only CO2R, CN, COR, NO2, and SO2Ph. Although amides (CONR1R2) are also typical electron-withdraw...The electron-withdrawing groups (EWGs) in the electrophilic alkenes employed in the Michael addition reaction are almost only CO2R, CN, COR, NO2, and SO2Ph. Although amides (CONR1R2) are also typical electron-withdrawing groups and are of great importance in organic synthesis, they are scarcely em-ployed as the EWGs of the electrophilic alkenes in the Michael addition reaction. In this work, the Mi-chael reactions of acrylamide and its derivatives with cyclanones were successfully carried out in the presence of enough radical inhibitors. The amide groups play a key role in producing the preferred products. The N-substituted acrylamides, including N-monosubstituted and N,N-disubstituted acryla-mides could react with cyclohexanone (CHn) to give the expected 2-carbamoylethyl derivatives; how-ever, acrylamide reacting with cyclohexanone only produced ene-lactam. Cyclanones also have effects on the products, while the ring size of cyclanones influences the reaction yield and the α-substituent decides the ratio of resulting isomeric ene-lactams.展开更多
BACKGROUND Acrylamide(ACR),a toxic compound commonly found in heat-processed foods,poses a serious risk to liver health due to its oxidative and inflammatory effects.AIM To evaluate the hepatoprotective potential of g...BACKGROUND Acrylamide(ACR),a toxic compound commonly found in heat-processed foods,poses a serious risk to liver health due to its oxidative and inflammatory effects.AIM To evaluate the hepatoprotective potential of ginger extract in mitigating ACR-induced liver toxicity in a rat model.METHODS Male Sprague-Dawley rats were randomly assigned into control,ACR-treated,and ACR+ginger-treated groups.Liver function enzymes[alanine aminotransferase(ALT),aspartate aminotransferase(AST),alkaline phosphatase(ALP)],oxidative stress biomarkers[malondialdehyde(MDA),glutathione(GSH),catalase(CAT),superoxide dismutase(SOD)],and histopathological assessments were performed.In addition,gene expression analyses of key antioxidant and inflammatory markers were conducted using quantitative polymerase chain reaction.RESULTS ACR administration significantly increased serum levels of ALT,AST,ALP,and MDA,while reducing levels of GSH,CAT,and SOD.Histological analysis revealed hepatic degeneration and inflammation.Co-administration of ginger extract significantly reversed these effects,restoring antioxidant enzyme levels,reducing oxidative stress,and improving liver histoarchitecture.CONCLUSION Ginger extract exhibited strong hepatoprotective effects against ACR-induced toxicity through antioxidant and anti-inflammatory mechanisms.These findings support the potential role of ginger as a natural dietary intervention for mitigating liver damage caused by environmental toxins.Further clinical studies are recommended to confirm its efficacy in human populations.展开更多
Acrylamide(AA)is a harmful substance widely found in infant and child biscuits;however,the health hazards of AA,especially endogenous AA,in the biscuit matrix is poorly understood.This study aimed to determine the eff...Acrylamide(AA)is a harmful substance widely found in infant and child biscuits;however,the health hazards of AA,especially endogenous AA,in the biscuit matrix is poorly understood.This study aimed to determine the effects of endogenous(0.11 mg/(kg bw·day))and exogenous(1.31,5.23,and 10.13 mg/(kg bw·day))AA exposure from biscuit diet on the hematology,hormone levels,immune function,and liver and kidney damage in growing female rat pups.For the hematological indices,a quadratic reduction was observed in percentage of neutrophils(Neu%)and percentage of eosinophils(Eos%)in the leukograms and in mean corpuscular hemoglobin concentration and platelet in the erythrograms in all the AA-exposed groups.In terms of hormones,extremely remarkably elevations in estradiol(E_(2))and growth hormone(GH)levels were associated with exogenous AA,and a significant increase in GH levels was noted in the endogenous AA group.Regarding immune function,endogenous and exogenous AA showed a dose-dependent immunotoxic effect on lysozyme(LYSO),nitric oxide(NO),immunoglobulin(Ig)G,and IgM.In particular,the lactate dehydrogenase(LDH)activity was significantly high in the exogenous medium dose(Exo-M)and exogenous high dose(Exo-H)groups,and the percentage of CD3^(+)T cells in the blood and CD8^(+)expression levels in the spleen were significantly elevated in the Exo-H group.For liver and kidney function,exogenous AA had a dose-dependent effect on alanine aminotransferases(ALT),aspartate transferases(AST),alkaline phosphatase(ALP),urea nitrogen(UREA),and creatinine(CREA-S).In addition to the dose-dependent effect on the pathological changes in the liver and kidneys,the endogenous AA group presented with hepatocellular steatosis,kidney inflammatory infiltrates,and glomerular and tubular atrophy.Overall,our findings suggested the dose-dependent harmful effect of endogenous and exogenous AA.Special attention should be paid to the damage caused by exposure to endogenous AA.Stringent AA intake guidelines and measures are required to minimize AA levels in the food matrix.展开更多
Acrylamide is classified as a Class 2A carcinogen and mainly metabolized to produce hepatotoxicity.Phosphatidylcholine is thought to protect the liver from damage,but the protective role of phosphatidylcholine on acry...Acrylamide is classified as a Class 2A carcinogen and mainly metabolized to produce hepatotoxicity.Phosphatidylcholine is thought to protect the liver from damage,but the protective role of phosphatidylcholine on acrylamide-exposed metabolic disorders remains unclear.We investigated protective effect of phosphatidylcholine on the hepatic metabolism in rats exposed to acrylamide using metabolomics and molecular biology approaches.Overall,32 endogenous effect biomarkers and 4 exposure biomarkers were identified as differential signature metabolites responsible for acrylamide exposure and phosphatidylcholine protection.Acrylamide exposure interferes with glutathione metabolism by consuming antioxidant glutathione,cysteine and L-ascorbic acid,and disrupts lipid and carbohydrate metabolism through reducing carnitine content and increasing lipid peroxidation.The phosphatidylcholine treatment reduces the expression of cytochrome P4502E1,alleviates the oxidative stress and inflammation of the liver,and stabilizes the content of glutathione,and thus alleviates the disorder of glutathione.Meanwhile,phosphatidylcholine shifted acrylamide-induced phosphatidylcholine into lysophosphatidylcholine to storage from lysophosphatidylcholine to diacylglycerol,thereby maintaining metabolic homeostasis of glycerophospholipid.The results suggested that phosphatidylcholine supplementation alleviate the disorder of glutathione and lipid metabolism caused by acrylamide exposure,but not significantly change the levels of mercapturic acid adducts of acrylamide,providing the evidence for phosphatidylcholine protection against acrylamide-induced liver injury.展开更多
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ...Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.展开更多
Our previous study has demonstrated that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A_(1))can prevent acrylamide(ACR)-induced cytotoxicity in small intestine cells.However,the potential mechanism re...Our previous study has demonstrated that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A_(1))can prevent acrylamide(ACR)-induced cytotoxicity in small intestine cells.However,the potential mechanism remains poorly understood.In this study,ACR treatment was found to increase the levels of 8-hydroxy deoxyguanine(8-OHdG)and phosphorated histone H_(2)AX(γH_(2)AX),two DNA damage markers,thereby resulting in cell cycle arrest in the G2/M phase;whereas both A_(1) and D-A_(1) could prevent the phosphorylation of ataxia telangiectasia mutated(ATM)and checkpoint kinase 2(Chk2),and then regulate the expression of G2/M phase-related proteins,finally maintaining normal cell cycle progression.Moreover,A_(1) and D-A_(1) could increase the B cell lymphoma 2(Bcl-2)/Bcl2-associated X(Bax)ratio and decrease the expression of cleaved caspase-3 and cleaved caspase-9 proteins to alleviate ACR-induced cell apoptosis,which might be related to the inhibition of the mitogen-activated protein kinase(MAPK)pathway.More importantly,A_(1) showed no remarkable variation in inhibitory effect before and after digestion,indicating that it can endure gastrointestinal digestion and may be a promising phytochemical to alleviate ACR-induced intestinal cell damage.展开更多
Aqueous zinc metal batteries(ZMBs)are vital to potable electronics and electric energy infrastructures because of their high energy conversion efficiency,high energy density,and environmental friendliness.However,ramp...Aqueous zinc metal batteries(ZMBs)are vital to potable electronics and electric energy infrastructures because of their high energy conversion efficiency,high energy density,and environmental friendliness.However,rampant zinc dendrite growth and side reactions on the Zn anode seriously impede the practical application of ZMBs.In this work,morpholine-crosslinked polyacrylamide hydrogel electrolytes(ploy(acrylamide),6m-PAM)are successfully developed to simultaneously regulate solvation shell to suppress side reactions and homogenize Zn^(2+)ion migration for dendrite-free ZMBs.Notably,the 6m-PAM electrolyte exhibits excellent mechanical strength of 50.6 kPa,high Zn^(2+)ion conductivity of 52 mS cm^(-1)at room temperature,and fast self-healing ability,providing stable and adaptable electrolyte-anode interfaces.Experimental and theoretical calculation results reveal that Zn^(2+)-N(morpholine)coordination interaction effectively reshapes the primary solvation shell of Zn^(2+),suppressing the activity of free water and Zn dendrites.As a result,the 6m-PAM electrolyte endows symmetric zinc cells with a long-term cycling life of 2000 h at 7.5 mA cm^(-2).Notably,Zn/Polyaniline(PANI)batteries equipped with 6m-PAM electrolytes also exhibit a high capacity of 124 mA h g^(-1)at 1 A g^(-1)and a long cycling life of 4000 times with a high-capacity retention of 98.3%,This functional crosslinked hydrogel electrolyte paves a new way to construct durable dendrite-free ZMBs.展开更多
Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of f...Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.展开更多
An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by graf...An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications展开更多
Chitosan, as a kind of natural polymer, has many advantages, such as abundant sources, biological degradation, no secondary contamination and facile modification. In this work, we prepared modified chitosan flocculant...Chitosan, as a kind of natural polymer, has many advantages, such as abundant sources, biological degradation, no secondary contamination and facile modification. In this work, we prepared modified chitosan flocculants with double electrical behavior via polymerizing chitosan, acrylamide and sodium carboxymethyl cellulose together by using ammonium persulfate as the indicator in water. The product is a comb-type of chitosan copolymer and a polymeric ampholyte. And then we studied the product by FTIR, UV-Vis, TG, DSC spectrometeries and viscometry, etc. We also performed CACM′s water treat experiment. The effects of pH values, reaction time and dose of the new floccalant on treating various of waste water have been investigated, too.展开更多
A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylami...A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9,0 and 25℃. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formanaide 〉 benzamide 〉 acetamide 〉 cyanoacetamide 〉 propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.展开更多
Objective To assess the current status of the acrylamide in the Chinese food supply, the dietary acrylamide exposure in the Chinese population and to estimate the public health risks of the current consumption. Method...Objective To assess the current status of the acrylamide in the Chinese food supply, the dietary acrylamide exposure in the Chinese population and to estimate the public health risks of the current consumption. Methods The acrylamide content in the total diet study (TDS) food samples was analyzed using an LC-MS/MS method. Based on the analytical results, the dietary exposure calculations were performed using a deterministic method, combining mean acrylamide concentrations from the food group composite with their associated food consumptions. Results Acrylamide was detected in 43.7% of all samples collected and acrylamide concentration varied from ND to 526.6 I^g/kg. The estimated dietary intakes of acrylamide among Chinese general population given as the mean and the 95th percentile (P95) were 0.286 and 0.490 iJg.kg1 bw.day1, respectively. The margins of exposure (MOEs) for the population calculated using both benchmark dose lower confidence limit for a 10% extra risk of tumors in animals (BMDL10) 0.31 and 0.18 i^g.k8-1 bw-dayz, were 1069 and 621 for the mean dietary exposure, and 633 and 367 for the high dietary exposure respectively. Conclusion These MOE values might indicate a human health concern on acrylamide for Chinese population. Efforts should continue to reduce acrylamide levels in food in order to reduce the dietary risks to the human health.展开更多
A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO...A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.展开更多
Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesran...Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesranging 1-30.0 kGy,has been investigated under various swelling media.These swelling media were basically solvents(solutions),produced by dissolving methanol,ethanol,glucose,sucrose,sodium chloride and sodium persulfate individuallywith distilled water,and solutions prepared with pHs=3,7 and 10.The investigation was performed in order to observe theeffect of these solvents and pHs as well as the influence of monomer concentrations,radiation doses and times on swellingbehavior of hydrogels.Swelling values were found higher for hydrogels prepared with lower monomer concentrations(ca.20 wt%)and radiation doses(ca.5 kGy)and showed a leveling off tendency within 24 h.The glucose solvent and the buffersolution of pH=10 revealed significant increase of swelling of hydrogels as compared to other solutions.Results areexplained based on crosslinking density in hydrogel,polymer-solvent/polymer-polymer interactions in solutions,permeability of molecules in solutions and ionization capacity of hydrogel in pH.展开更多
基金the National Natural Science Foundation of China(Nos.21472211,21502212,21772211)Youth Innovation Promotion Association CAS(Nos.2014229 and2018293)+1 种基金Institutes for Drug Discovery and Development,Chinese Academy of Sciences(No.CASIMM 0120163006)Science and Technology Commission of Shanghai Municipality(No.17JC1405000)for financial support
文摘A copper-catalyzedα-selective C–H trifluoromethylation of acrylamides with TMSCF3 is described.A wide range of arenes and heteroarenes at theβ-position of acrylamides are compatible with the reaction,affording the corresponding(E)-trifluoromethylated products in moderate to good yields.The reaction proceeded fast and can be completed within 30 min.
文摘A new classification of the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. 13C NMR and Raman studies of a series of polymeric samples of fullerene-grafted poly (acrylamide), which were prepared by systematic variation of concentration of fullerene and acrylamide, are described. 13C NMR spectral analysis of the polymeric samples showed a peak for fullerene at 143 δppm and for poly (acrylamide) between 170 and 180 δppm and Raman spectral analysis of the poly-meric samples gave the Raman band for fullerene between 1470 cm-1 and poly (acrylamide) at 2800 cm-1. The Tg value, obtained from DSC results, showed a high glass transition temperature at 100.94°C revealing the presence of fullerene in the polymeric matrix. TGA analysis shows that polymer is thermally stable up to 340°C.
基金Project supported by the National Natural Science Foundation of China (Grant No. 29702006)the special fund of Nature Science of Tianjin
文摘Molecular modeling of acrylates (acrylamides) with D1 protein of Pisum sativum is presented. Studies show that the binding force mainly includes H-bond interaction, Van der Waals and π-ring stacking interaction. It was found that SER 268 in Dl protein might be an important binding site. It is important for high inhibitory activity of compounds whether an electronegative atom in alkyl of ester linkage could make H-bond interaction with SER 268 in Dl protein. Thus some new acrylates (acrylamides) were designed and synthesized, Bioassay indicated that these new compounds showed expected Hill reaction inhibitory activity.
基金the National Natural Science Foundation of China (Grant Nos. 20374013 and 20674019)Program for New Century Excellent Talents in University (Grant No. NCET-04-0413)+1 种基金Science and Technology Commission of Shanghai Municipality (Grant Nos. 03JC14023 and 05DJ14005)"Shu Guang" Project of Shanghai Municipal Education Commission and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20060251015)
文摘The electron-withdrawing groups (EWGs) in the electrophilic alkenes employed in the Michael addition reaction are almost only CO2R, CN, COR, NO2, and SO2Ph. Although amides (CONR1R2) are also typical electron-withdrawing groups and are of great importance in organic synthesis, they are scarcely em-ployed as the EWGs of the electrophilic alkenes in the Michael addition reaction. In this work, the Mi-chael reactions of acrylamide and its derivatives with cyclanones were successfully carried out in the presence of enough radical inhibitors. The amide groups play a key role in producing the preferred products. The N-substituted acrylamides, including N-monosubstituted and N,N-disubstituted acryla-mides could react with cyclohexanone (CHn) to give the expected 2-carbamoylethyl derivatives; how-ever, acrylamide reacting with cyclohexanone only produced ene-lactam. Cyclanones also have effects on the products, while the ring size of cyclanones influences the reaction yield and the α-substituent decides the ratio of resulting isomeric ene-lactams.
文摘BACKGROUND Acrylamide(ACR),a toxic compound commonly found in heat-processed foods,poses a serious risk to liver health due to its oxidative and inflammatory effects.AIM To evaluate the hepatoprotective potential of ginger extract in mitigating ACR-induced liver toxicity in a rat model.METHODS Male Sprague-Dawley rats were randomly assigned into control,ACR-treated,and ACR+ginger-treated groups.Liver function enzymes[alanine aminotransferase(ALT),aspartate aminotransferase(AST),alkaline phosphatase(ALP)],oxidative stress biomarkers[malondialdehyde(MDA),glutathione(GSH),catalase(CAT),superoxide dismutase(SOD)],and histopathological assessments were performed.In addition,gene expression analyses of key antioxidant and inflammatory markers were conducted using quantitative polymerase chain reaction.RESULTS ACR administration significantly increased serum levels of ALT,AST,ALP,and MDA,while reducing levels of GSH,CAT,and SOD.Histological analysis revealed hepatic degeneration and inflammation.Co-administration of ginger extract significantly reversed these effects,restoring antioxidant enzyme levels,reducing oxidative stress,and improving liver histoarchitecture.CONCLUSION Ginger extract exhibited strong hepatoprotective effects against ACR-induced toxicity through antioxidant and anti-inflammatory mechanisms.These findings support the potential role of ginger as a natural dietary intervention for mitigating liver damage caused by environmental toxins.Further clinical studies are recommended to confirm its efficacy in human populations.
文摘Acrylamide(AA)is a harmful substance widely found in infant and child biscuits;however,the health hazards of AA,especially endogenous AA,in the biscuit matrix is poorly understood.This study aimed to determine the effects of endogenous(0.11 mg/(kg bw·day))and exogenous(1.31,5.23,and 10.13 mg/(kg bw·day))AA exposure from biscuit diet on the hematology,hormone levels,immune function,and liver and kidney damage in growing female rat pups.For the hematological indices,a quadratic reduction was observed in percentage of neutrophils(Neu%)and percentage of eosinophils(Eos%)in the leukograms and in mean corpuscular hemoglobin concentration and platelet in the erythrograms in all the AA-exposed groups.In terms of hormones,extremely remarkably elevations in estradiol(E_(2))and growth hormone(GH)levels were associated with exogenous AA,and a significant increase in GH levels was noted in the endogenous AA group.Regarding immune function,endogenous and exogenous AA showed a dose-dependent immunotoxic effect on lysozyme(LYSO),nitric oxide(NO),immunoglobulin(Ig)G,and IgM.In particular,the lactate dehydrogenase(LDH)activity was significantly high in the exogenous medium dose(Exo-M)and exogenous high dose(Exo-H)groups,and the percentage of CD3^(+)T cells in the blood and CD8^(+)expression levels in the spleen were significantly elevated in the Exo-H group.For liver and kidney function,exogenous AA had a dose-dependent effect on alanine aminotransferases(ALT),aspartate transferases(AST),alkaline phosphatase(ALP),urea nitrogen(UREA),and creatinine(CREA-S).In addition to the dose-dependent effect on the pathological changes in the liver and kidneys,the endogenous AA group presented with hepatocellular steatosis,kidney inflammatory infiltrates,and glomerular and tubular atrophy.Overall,our findings suggested the dose-dependent harmful effect of endogenous and exogenous AA.Special attention should be paid to the damage caused by exposure to endogenous AA.Stringent AA intake guidelines and measures are required to minimize AA levels in the food matrix.
基金supported by the National Natural Science Foundation of China(21976156)。
文摘Acrylamide is classified as a Class 2A carcinogen and mainly metabolized to produce hepatotoxicity.Phosphatidylcholine is thought to protect the liver from damage,but the protective role of phosphatidylcholine on acrylamide-exposed metabolic disorders remains unclear.We investigated protective effect of phosphatidylcholine on the hepatic metabolism in rats exposed to acrylamide using metabolomics and molecular biology approaches.Overall,32 endogenous effect biomarkers and 4 exposure biomarkers were identified as differential signature metabolites responsible for acrylamide exposure and phosphatidylcholine protection.Acrylamide exposure interferes with glutathione metabolism by consuming antioxidant glutathione,cysteine and L-ascorbic acid,and disrupts lipid and carbohydrate metabolism through reducing carnitine content and increasing lipid peroxidation.The phosphatidylcholine treatment reduces the expression of cytochrome P4502E1,alleviates the oxidative stress and inflammation of the liver,and stabilizes the content of glutathione,and thus alleviates the disorder of glutathione.Meanwhile,phosphatidylcholine shifted acrylamide-induced phosphatidylcholine into lysophosphatidylcholine to storage from lysophosphatidylcholine to diacylglycerol,thereby maintaining metabolic homeostasis of glycerophospholipid.The results suggested that phosphatidylcholine supplementation alleviate the disorder of glutathione and lipid metabolism caused by acrylamide exposure,but not significantly change the levels of mercapturic acid adducts of acrylamide,providing the evidence for phosphatidylcholine protection against acrylamide-induced liver injury.
基金supported by the National Natural Science Foundation of China(32060577 and 32360619)Natural Science Foundation of Jiangxi Province(20224ACB203016 and 20212BAB203034)the Open Project of China Food Flavor and Nutrition Health Innovation Center(CFC2023B-013).
文摘Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.
基金supported by the project from National Natural Science Foundation of China(31671962)Excellent Youth Foundation of Education Department of Hunan Province(23B0229)Fundamental Research Funds for the Central Universities(2662019PY034).
文摘Our previous study has demonstrated that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A_(1))can prevent acrylamide(ACR)-induced cytotoxicity in small intestine cells.However,the potential mechanism remains poorly understood.In this study,ACR treatment was found to increase the levels of 8-hydroxy deoxyguanine(8-OHdG)and phosphorated histone H_(2)AX(γH_(2)AX),two DNA damage markers,thereby resulting in cell cycle arrest in the G2/M phase;whereas both A_(1) and D-A_(1) could prevent the phosphorylation of ataxia telangiectasia mutated(ATM)and checkpoint kinase 2(Chk2),and then regulate the expression of G2/M phase-related proteins,finally maintaining normal cell cycle progression.Moreover,A_(1) and D-A_(1) could increase the B cell lymphoma 2(Bcl-2)/Bcl2-associated X(Bax)ratio and decrease the expression of cleaved caspase-3 and cleaved caspase-9 proteins to alleviate ACR-induced cell apoptosis,which might be related to the inhibition of the mitogen-activated protein kinase(MAPK)pathway.More importantly,A_(1) showed no remarkable variation in inhibitory effect before and after digestion,indicating that it can endure gastrointestinal digestion and may be a promising phytochemical to alleviate ACR-induced intestinal cell damage.
基金supported by the National Natural Science Foundation of China(22479022)the Natural Science Foundation of Liaoning Province(2020-MS-021)。
文摘Aqueous zinc metal batteries(ZMBs)are vital to potable electronics and electric energy infrastructures because of their high energy conversion efficiency,high energy density,and environmental friendliness.However,rampant zinc dendrite growth and side reactions on the Zn anode seriously impede the practical application of ZMBs.In this work,morpholine-crosslinked polyacrylamide hydrogel electrolytes(ploy(acrylamide),6m-PAM)are successfully developed to simultaneously regulate solvation shell to suppress side reactions and homogenize Zn^(2+)ion migration for dendrite-free ZMBs.Notably,the 6m-PAM electrolyte exhibits excellent mechanical strength of 50.6 kPa,high Zn^(2+)ion conductivity of 52 mS cm^(-1)at room temperature,and fast self-healing ability,providing stable and adaptable electrolyte-anode interfaces.Experimental and theoretical calculation results reveal that Zn^(2+)-N(morpholine)coordination interaction effectively reshapes the primary solvation shell of Zn^(2+),suppressing the activity of free water and Zn dendrites.As a result,the 6m-PAM electrolyte endows symmetric zinc cells with a long-term cycling life of 2000 h at 7.5 mA cm^(-2).Notably,Zn/Polyaniline(PANI)batteries equipped with 6m-PAM electrolytes also exhibit a high capacity of 124 mA h g^(-1)at 1 A g^(-1)and a long cycling life of 4000 times with a high-capacity retention of 98.3%,This functional crosslinked hydrogel electrolyte paves a new way to construct durable dendrite-free ZMBs.
文摘Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.
文摘An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications
基金Supported by the National Natural Science Foundation of China(No.30 3716 95 )
文摘Chitosan, as a kind of natural polymer, has many advantages, such as abundant sources, biological degradation, no secondary contamination and facile modification. In this work, we prepared modified chitosan flocculants with double electrical behavior via polymerizing chitosan, acrylamide and sodium carboxymethyl cellulose together by using ammonium persulfate as the indicator in water. The product is a comb-type of chitosan copolymer and a polymeric ampholyte. And then we studied the product by FTIR, UV-Vis, TG, DSC spectrometeries and viscometry, etc. We also performed CACM′s water treat experiment. The effects of pH values, reaction time and dose of the new floccalant on treating various of waste water have been investigated, too.
基金Financial support was mainly provided to JittimaCharoenpanich from Center of Excellence on Environmental Health,Toxicology and Management of Chemicals(ETM-PERDO)partly from Faculty of Science,Burapha Universitya scholarship support to Kanokhathai Buranasilp from Center of Excellence for Innovation in Chemistry (PERCH-CIC),Commission on Higher Education,Ministry of Education
文摘A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9,0 and 25℃. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formanaide 〉 benzamide 〉 acetamide 〉 cyanoacetamide 〉 propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.
基金supported by the National Basic Resarch Program of China(2012CB20804)grant from Ministry of Health,PR China(200902009)
文摘Objective To assess the current status of the acrylamide in the Chinese food supply, the dietary acrylamide exposure in the Chinese population and to estimate the public health risks of the current consumption. Methods The acrylamide content in the total diet study (TDS) food samples was analyzed using an LC-MS/MS method. Based on the analytical results, the dietary exposure calculations were performed using a deterministic method, combining mean acrylamide concentrations from the food group composite with their associated food consumptions. Results Acrylamide was detected in 43.7% of all samples collected and acrylamide concentration varied from ND to 526.6 I^g/kg. The estimated dietary intakes of acrylamide among Chinese general population given as the mean and the 95th percentile (P95) were 0.286 and 0.490 iJg.kg1 bw.day1, respectively. The margins of exposure (MOEs) for the population calculated using both benchmark dose lower confidence limit for a 10% extra risk of tumors in animals (BMDL10) 0.31 and 0.18 i^g.k8-1 bw-dayz, were 1069 and 621 for the mean dietary exposure, and 633 and 367 for the high dietary exposure respectively. Conclusion These MOE values might indicate a human health concern on acrylamide for Chinese population. Efforts should continue to reduce acrylamide levels in food in order to reduce the dietary risks to the human health.
文摘A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.
文摘Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesranging 1-30.0 kGy,has been investigated under various swelling media.These swelling media were basically solvents(solutions),produced by dissolving methanol,ethanol,glucose,sucrose,sodium chloride and sodium persulfate individuallywith distilled water,and solutions prepared with pHs=3,7 and 10.The investigation was performed in order to observe theeffect of these solvents and pHs as well as the influence of monomer concentrations,radiation doses and times on swellingbehavior of hydrogels.Swelling values were found higher for hydrogels prepared with lower monomer concentrations(ca.20 wt%)and radiation doses(ca.5 kGy)and showed a leveling off tendency within 24 h.The glucose solvent and the buffersolution of pH=10 revealed significant increase of swelling of hydrogels as compared to other solutions.Results areexplained based on crosslinking density in hydrogel,polymer-solvent/polymer-polymer interactions in solutions,permeability of molecules in solutions and ionization capacity of hydrogel in pH.