Abstract Objective To develop a new technique for assessing the risk of birth defects, which are a major cause of infant mortality and disability in many parts of the world. Methods The region of interest in this stud...Abstract Objective To develop a new technique for assessing the risk of birth defects, which are a major cause of infant mortality and disability in many parts of the world. Methods The region of interest in this study was Heshun County, the county in China with the highest rate of neural tube defects (NTDs). A hybrid particle swarm optimization/ant colony optimization (PSO/ACO) algorithm was used to quantify the probability of NTDs occurring at villages with no births. The hybrid PSO/ACO algorithm is a form of artificial intelligence adapted for hierarchical classification. It is a powerful technique for modeling complex problems involving impacts of causes. Results The algorithm was easy to apply, with the accuracy of the results being 69.5%+7.02% at the 95% confidence level. Conclusion The proposed method is simple to apply, has acceptable fault tolerance, and greatly enhances the accuracy of calculations.展开更多
The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the &...The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.展开更多
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi...An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.展开更多
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation...This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability.展开更多
基金supported by National Natural Science Foundation of China(No.41101431)the fourth installment special funding of China Postdoctoral Science Foundation(No.201104003)+1 种基金China Postdoctoral Science Foundation(No.20100470004)the State Key Funds of Social Science Project(Research on Disability Prevention Measurement in China,No.09&ZD072)
文摘Abstract Objective To develop a new technique for assessing the risk of birth defects, which are a major cause of infant mortality and disability in many parts of the world. Methods The region of interest in this study was Heshun County, the county in China with the highest rate of neural tube defects (NTDs). A hybrid particle swarm optimization/ant colony optimization (PSO/ACO) algorithm was used to quantify the probability of NTDs occurring at villages with no births. The hybrid PSO/ACO algorithm is a form of artificial intelligence adapted for hierarchical classification. It is a powerful technique for modeling complex problems involving impacts of causes. Results The algorithm was easy to apply, with the accuracy of the results being 69.5%+7.02% at the 95% confidence level. Conclusion The proposed method is simple to apply, has acceptable fault tolerance, and greatly enhances the accuracy of calculations.
文摘The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.
基金supported by the National Aviation Science Foundation of China(20090196002)
文摘An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
基金funded by the Russian Foundation for Basic Research(RFBR)(No.17-07-00361a)。
文摘This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability.