期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于TVFFRLS-ACKF的锂离子电池SOC估算 被引量:5
1
作者 华菁 阮观强 +2 位作者 胡星 郁长青 袁伟光 《电子测量技术》 北大核心 2022年第24期22-28,共7页
实现电池荷电状态(SOC)的估算预测是电池管理系统(BMS)的重要任务之一。电池模型参数的辨识是实现锂离子电池SOC估算的前提,也是决定其估算精度的关键因素。本文以18650型锂离子单体电池为研究对象,采用带时变遗忘因子的递推最小二乘法(... 实现电池荷电状态(SOC)的估算预测是电池管理系统(BMS)的重要任务之一。电池模型参数的辨识是实现锂离子电池SOC估算的前提,也是决定其估算精度的关键因素。本文以18650型锂离子单体电池为研究对象,采用带时变遗忘因子的递推最小二乘法(TVFFRLS)对电池参数进行在线辨识,实现遗忘因子自适应的自动寻优,提高参数在线辨识的稳定性。在此基础上,采用自适应容积卡尔曼滤波(ACKF)对锂离子电池SOC进行估算,对过程噪声、量测噪声的协方差实时更新,并在不同工况下进行算法验证。结果表明,该算法噪声抑制性能良好,可以提高SOC的估算精度,最大估算误差不超过1.5%,且ACKF算法具有较强的鲁棒性。 展开更多
关键词 荷电状态 带时变遗忘因子最小二乘法 自适应容积卡尔曼滤波
原文传递
基于BCRLS-ACKF的锂离子电池荷电状态估计 被引量:3
2
作者 苏航 高怀斌 +4 位作者 李争光 李洪峻 刘剑飞 佐晓波 纪林林 《储能科学与技术》 CAS CSCD 北大核心 2021年第6期2334-2341,共8页
精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要。模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素。为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识... 精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要。模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素。为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识。在此基础上,采用自适应容积卡尔曼滤波(ACKF)算法估计电池SOC,对系统噪声进行实时更新以提高估计精度。此外,对于计算过程中由于协方差矩阵失去正定性而出现平方根无法分解的问题,利用奇异值分解的方法代替Cholesky分解,以提高数值计算的稳定性。最后将BCRLS与ACKF相结合以实现模型参数和SOC的联合估计,并在不同工况和初始值不精确的情况下进行算法验证,结果表明本文所提算法具有较高的精度,平均绝对误差在2%以内。 展开更多
关键词 荷电状态 偏差补偿最小二乘法 奇异值分解 自适应容积卡尔曼滤波 联合估计
在线阅读 下载PDF
基于自适应CKF的锂离子电池SOC估算 被引量:8
3
作者 徐万 谢长君 +1 位作者 邓坚 黄亮 《电池》 CAS CSCD 北大核心 2020年第4期333-337,共5页
扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)算法估算电池荷电状态(SOC)依赖等效模型参数的准确性,估算精度低。容积卡尔曼滤波(CKF)算法的滤波性能良好。利用自适应CKF(ACKF)算法估算电池SOC,自适应调节过程噪声协方差和量测噪声协方差... 扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)算法估算电池荷电状态(SOC)依赖等效模型参数的准确性,估算精度低。容积卡尔曼滤波(CKF)算法的滤波性能良好。利用自适应CKF(ACKF)算法估算电池SOC,自适应调节过程噪声协方差和量测噪声协方差,提高估算SOC的精度。对锂离子电池建立二阶RC等效电路模型,在不同工况下进行充放电,用卡尔曼滤波算法在线辨识等效模型的参数,ACKF算法实时估算SOC。ACKF算法估算SOC的鲁棒性较强,精度在1.5%以内。 展开更多
关键词 锂离子电池 荷电状态(SOC) 卡尔曼滤波 自适应容积卡尔曼滤波(ackf)
在线阅读 下载PDF
弹载BDS/SINS深组合自适应CKF滤波方法研究 被引量:4
4
作者 韩林 陈帅 +1 位作者 陈德潘 张博雅 《电光与控制》 CSCD 北大核心 2019年第4期6-10,22,共6页
针对弹道导弹高动态、非线性的特点,引入了基于三阶球面-径向容积准则的非线性容积卡尔曼滤波(CKF)算法。此外,针对其特点,研究了发射惯性系下BDS/SINS深组合导航下的自适应容积卡尔曼滤波(ACKF)算法。该算法根据Sage滤波开窗法的思想... 针对弹道导弹高动态、非线性的特点,引入了基于三阶球面-径向容积准则的非线性容积卡尔曼滤波(CKF)算法。此外,针对其特点,研究了发射惯性系下BDS/SINS深组合导航下的自适应容积卡尔曼滤波(ACKF)算法。该算法根据Sage滤波开窗法的思想和渐消的思想,通过引入多重次优渐消因子到CKF滤波器中,自适应地在线调整CKF滤波器的观测误差协方差阵,在提高滤波精度的同时实现对快速变化的状态进行强有力的跟踪。实验结果表明:多重次优渐消因子的引入使得CKF滤波器可以更多地利用系统的先验信息,ACKF滤波器对快速变化的状态具有更强的跟踪,系统误差在较短的时间内收敛,提高了组合导航系统的动态性能。 展开更多
关键词 弹道导弹 发射惯性坐标系 深组合导航 多重次优渐消因子 ackf
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的主动配电网状态估计 被引量:7
5
作者 张叶贵 刘敏 +2 位作者 石倩 罗永平 孙江山 《电测与仪表》 北大核心 2020年第19期27-32,共6页
有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter... 有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter,CKF)算法引入到配电网进行动态状态估计,并与改进后的自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)算法进行对比,仿真分析表明CKF算法较AUKF算法具有较高的滤波精度以及较好的数值稳定性。该算法在系统负荷发生突变时滤波精度有所下降,为此进一步提出了自适应容积卡尔曼滤波(Adaptive Cubature Kalman Filter,ACKF)算法以改善状态估计性能。对三相不平衡电网进行算例仿真表明:ACKF算法相比较于CKF算法,滤波精度更高、鲁棒性更强。 展开更多
关键词 无迹卡尔曼滤波 容积卡尔曼滤波 AUKF ackf 主动配电网
在线阅读 下载PDF
一类参数不确定非线性系统的故障检测与重构 被引量:2
6
作者 王俭臣 齐晓慧 单甘霖 《系统工程与电子技术》 EI CSCD 北大核心 2015年第1期155-162,共8页
飞行器在全包络上表现出明显的气动参数不确定性,以某无人机纵向模型为研究对象,提出一种不确定参数在线估计的自适应观测器故障重构方法。首先,将系统状态方程描述为一类带时变参数的仿射非线性结构,在参数增广系统能观性分析基础上,... 飞行器在全包络上表现出明显的气动参数不确定性,以某无人机纵向模型为研究对象,提出一种不确定参数在线估计的自适应观测器故障重构方法。首先,将系统状态方程描述为一类带时变参数的仿射非线性结构,在参数增广系统能观性分析基础上,采用增广容积卡尔曼滤波(augmented cubature Kalman filter,ACKF)算法实现气动参数在线估计,以克服鲁棒性死区故障检测方法的保守性,提高检测灵敏度。其次,将所估计参数用于自适应观测器设计,由于Lie导数分析方法保证了对象系统的能观性,故系统不必满足文献方法中的特定规范形式;在此基础上,给出了故障检测自适应阈值和故障参数调节律,并分析了估计误差的收敛性。仿真实验表明了所提方法的有效性。 展开更多
关键词 纵向模型 参数不确定性 故障重构 增广容积卡尔曼滤波 自适应观测器
在线阅读 下载PDF
基于相对信息观测量的INS/USBL非线性组合导航方法 被引量:3
7
作者 董萍 程建华 +1 位作者 刘利强 牟宏杰 《系统工程与电子技术》 EI CSCD 北大核心 2019年第2期402-408,共7页
针对传统惯性导航系统/超短基线定位系统(inertial navigation system/ultra short base line,INS/USBL)组合导航利用绝对位置做观测信息存在导航精度较低,且噪声异常引起抗干扰能力弱的问题,提出基于相对信息观测量的INS/USBL非线性组... 针对传统惯性导航系统/超短基线定位系统(inertial navigation system/ultra short base line,INS/USBL)组合导航利用绝对位置做观测信息存在导航精度较低,且噪声异常引起抗干扰能力弱的问题,提出基于相对信息观测量的INS/USBL非线性组合导航方法。以INS解算的应答器相对于INS在基阵坐标系下的入射角、斜距信息与超短基线输出的入射角、斜距信息之差作为观测量建立量测方程。在改进Sage-Husa算法基础上采用容积规则,设计一种适用于非线性系统的自适应容积卡尔曼滤波估计器。仿真结果表明,该方法定位精度较传统方法提升2.4倍,在噪声异常情况下,滤波收敛,组合导航性能稳定。 展开更多
关键词 非线性系统 相对信息观测量 Sage-Husa算法 自适应容积卡尔曼滤波
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部