期刊文献+
共找到16,255篇文章
< 1 2 250 >
每页显示 20 50 100
Decoding the nexus:branched-chain amino acids and their connection with sleep,circadian rhythms,and cardiometabolic health 被引量:1
1
作者 Hui Li Laurent Seugnet 《Neural Regeneration Research》 SCIE CAS 2025年第5期1350-1363,共14页
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th... The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions. 展开更多
关键词 branched-chain amino acids cardiovascular health circadian clock DROSOPHILA INSULIN metabolism SLEEP γ-aminobutyric acid
暂未订购
Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson’s disease 被引量:1
2
作者 Olivier Kerdiles Méryl-Farelle Oye Mintsa Mi-mba +8 位作者 Katherine Coulombe Cyntia Tremblay VincentÉmond Martine Saint-Pierre Clémence Rouxel Line Berthiaume Pierre Julien Francesca Cicchetti Frédéric Calon 《Neural Regeneration Research》 SCIE CAS 2025年第2期574-586,共13页
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly... There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease. 展开更多
关键词 6-HYDROXYDOPAMINE DOPAMINE dopamine transporter EXERCISE neurorestoration Parkinson’s disease polyunsaturated fatty acids omega-3
暂未订购
Quantitative Analysis of the Fatty Acid Compositions of Different Oils and Associations with Antioxidant Capacity and Oxidative Stability 被引量:1
3
作者 LIU Junchen SUN Xiaoman +3 位作者 ZHANG Huirong SHAO Haofan LING Xiao LI Li 《现代食品科技》 北大核心 2025年第4期305-315,共11页
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w... Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils. 展开更多
关键词 gas chromatography-mass spectrometry vegetable oil fatty acid composition oxidative stability antioxidant capacity
在线阅读 下载PDF
Insight into the sorption and desorption pattern of pyrrolizidine alkaloids and their N-oxides in acidic tea(Camellia sinensis)plantation soils 被引量:2
4
作者 Yuting Lu Haolei Han +5 位作者 Yuexing Yi Yunfeng Chai ChenWang Xiangchun Zhang Xiangde Yang Hongping Chen 《Journal of Environmental Sciences》 2025年第2期350-363,共14页
Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are cruci... Pyrrolizidine alkaloids(PAs)and their N-oxides(PANOs)are phytotoxins produced by various plant species and have been emerged as environmental pollutants.The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots.This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics.Sorption amounts for seneciphylline(Sp)and seneciphylline-N-oxide(SpNO)in three acidic soils ranged from 2.9 to 5.9μg/g and 1.7 to 2.8μg/g,respectively.Desorption percentages for Sp and SpNO were from 22.2%to 30.5%and 36.1%to 43.9%.In the mixed PAs/PANOs systems,stronger sorption of PAs over PANOs was occurred in tested soils.Additionally,the Freundlich models more precisely described the sorption/desorption isotherms.Cation exchange capacity,sand content and total nitrogen were identified as major influencing factors by linear regression models.Overall,the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity.PANOs were more likely to migrate within soils and be absorbed by tea plants.It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology. 展开更多
关键词 Pyrrolizidine alkaloids Sorption-desorption behavior Tea plantation system acidic soil Linear regression model
原文传递
Bond engineering:weakening Ru-O covalency for efficient and stable water oxidation in acidic solutions 被引量:2
5
作者 Yifan Yang Jingtong Guo +4 位作者 Lixiong Xu Chenyue Li Rongqian Ning Jun Ma Shuo Geng 《Journal of Energy Chemistry》 2025年第3期1-9,共9页
The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has ... The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has been recognized as a viable strategy to foster the stability of RuO_(2)for acidic OER applications.This study presented an ion that does not readily gain or lose electrons,Ba^(2+),into RuO_(2)(Ba-RuO_(2))nanosheet(NS)catalyst that increased the number of exposed active sites,achieving a current density of 10 mA/cm^(2)with an overpotential of only 229 mV and sustaining this output for over 250 h.According to density functional theory(DFT)and X-ray absorption spectroscopy,Ba doping resulted in a longer Ru-O bond length,which in turn diminished the covalency of the bond.This alteration curtailed the involvement of LO and the dissolution of ruthenium(Ru),thereby markedly improving the durability of the catalyst over extended periods.Additionally,attenuated total reflectance-surface enhanced infrared absorption spectroscopy analysis substantiated that the OER mechanism shifted from a LO-mediated pathway to an adsorbate evolution pathway due to Ba doping,thereby circumventing Ru over-oxidation and further enhancing the stability of RuO_(2).Furthermore,DFT findings uncovered that Ba doping optimizes the adsorption energy of intermediates,thus enhancing the OER activity in acidic environments.This study offers a potent strategy to guide future developments on Ru-based oxide catalysts'stability in an acidic environment. 展开更多
关键词 Oxygen evolution reaction in acid Bond covalency Rutheniumoxide Ba doping
在线阅读 下载PDF
A New Perspective on the Prediction and Treatment of Stroke:The Role of Uric Acid 被引量:1
6
作者 Bingrui Zhu Xiaobin Huang +7 位作者 Jiahao Zhang Xiaoyu Wang Sixuan Tian Tiantong Zhan Yibo Liu Haocheng Zhang Sheng Chen Cheng Yu 《Neuroscience Bulletin》 2025年第3期486-500,共15页
Stroke,a major cerebrovascular disease,has high morbidity and mortality.Effective methods to reduce the risk and improve the prognosis are lacking.Currently,uric acid(UA)is associated with the pathological mechanism,p... Stroke,a major cerebrovascular disease,has high morbidity and mortality.Effective methods to reduce the risk and improve the prognosis are lacking.Currently,uric acid(UA)is associated with the pathological mechanism,prognosis,and therapy of stroke.UA plays pro/anti-oxidative and pro-inflammatory roles in vivo.The specific role of UA in stroke,which may have both neuroprotective and damaging effects,remains unclear.There is a U-shaped association between serum uric acid(SUA)levels and ischemic stroke(IS).UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke(AIS).Urate-lowering therapy(ULT)plays a protective role in IS with hyperuricemia or gout.SUA levels are associated with the cerebrovascular injury mechanism,risk,and outcomes of hemorrhagic stroke.In this review,we summarize the current research on the role of UA in stroke,providing potential targets for its prediction and treatment. 展开更多
关键词 Uric acid STROKE PREDICTION Treatment Uric acid therapy Urate-lowering therapy
原文传递
Caffeic acid and chlorogenic acid mediate the ADPN-AMPK-PPARαpathway to improve fatty liver and production performance in laying hens 被引量:1
7
作者 Wenjie Tian Gerard Bryan Gonzales +6 位作者 Hao Wang Youyou Yang Chaohua Tang Qingyu Zhao Junmin Zhang Huiyan Zhang Yuchang Qin 《Journal of Animal Science and Biotechnology》 2025年第4期1634-1655,共22页
Background Caffeic acid(CA)and its derivative,chlorogenic acid(CGA),have shown promise in preventing and alleviating fatty liver disease.CA,compared to CGA,has much lower production costs and higher bioavailability,ma... Background Caffeic acid(CA)and its derivative,chlorogenic acid(CGA),have shown promise in preventing and alleviating fatty liver disease.CA,compared to CGA,has much lower production costs and higher bioavailability,making it a potentially superior feed additive.However,the efficacy,mechanistic differences,and comparative impacts of CA and CGA on fatty liver disease in laying hens remain unclear.This study aimed to evaluate and compare the effects of CA and CGA on production performance,egg quality,and fatty liver disease in laying hens.Results A total of 1,44061-week-old Hyline Brown laying hens were randomly divided into 8 groups and fed diets supplemented with basal diet,25,50,100 and 200 mg/kg of CA,and 100,200 and 400 mg/kg of CGA(CON,CA25,CA50,CA100,CA200,CGA100,CGA200 and CGA400,respectively)for 12 weeks.Both CA and CGA improved production performance and egg quality,while reducing markers of hepatic damage and lipid accumulation.CA and CGA significantly decreased TG,TC,and LDL-C levels and increased T-SOD activity.Transcriptomic and proteomic analyses revealed that CA and CGA reduced hepatic lipid accumulation through downregulation of lipid biosynthesis-related genes(ACLY,ACACA,FASN,and SCD1)and enhanced lipid transport and oxidation genes(FABPs,CD36,CPT1A,ACOX1,and SCP2).Of note,low-dose CA25 exhibited equivalent efficacy to the higher dose CGA100 group in alleviating fatty liver conditions.Mechanistically,CA and CGA alleviated lipid accumulation via activation of the ADPN-AMPK-PPARαsignaling pathway.Conclusions This study demonstrates that dietary CA and CGA effectively improve laying performance,egg quality,and hepatic lipid metabolism in laying hens,with CA potentially being more economical and efficient.Transcriptomic and proteomic evidence highlight shared mechanisms between CA25 and CGA100.These findings provide a foundation for CA and CGA as therapeutic agents for fatty liver disease and related metabolic diseases in hens,and also offer insights into the targeted modification of CGA(including the isomer of CGA)into CA,thereby providing novel strategies for the efficient utilization of CGA.Highlights(1)Dietary CA and CGA improve fatty liver,laying performance and egg quality.(2)Lower dose of CA25 achieves the equivalent improvement as CGA100 or CGA200.(3)CA and CGA mediate the ADPN-AMPK-PPARαpathway to alleviate fatty liver. 展开更多
关键词 ABSORPTIVITY Caffeic acid Chlorogenic acid Fatty liver Laying hens
在线阅读 下载PDF
Usnic acid and tannic acid as inhibitors of coccidia and Clostridium perfringens:alleviating necrotic enteritis and improving intestinal health in broiler chickens 被引量:1
8
作者 Huiping Xu Minghao Yang +5 位作者 Jianyang Fu Huiyuan Lv Jiang Guo Changji Lu Zengpeng Lv Yuming Guo 《Journal of Animal Science and Biotechnology》 2025年第4期1577-1594,共18页
Background Necrotic enteritis(NE)in broiler chickens leads to significant economic losses in poultry production.This study examined the inhibitory effects of usnic acid and tannic acid on coccidia,sporozoite,and Clost... Background Necrotic enteritis(NE)in broiler chickens leads to significant economic losses in poultry production.This study examined the inhibitory effects of usnic acid and tannic acid on coccidia,sporozoite,and Clostridium perfringens and assessed their influence on growth performance and intestinal health in NE-challenged broilers through in vitro and in vivo experiments.Methods The in vitro experiment included 5 treatment groups:the negative control(NC),2μmol/L diclazuril(DZ),30μmol/L usnic acid(UA),90μmol/L tannic acid(TA),and 15μmol/L usnic acid^(+)45μmol/L tannic acid(UTA)groups.The in vivo experiment involved 320 broilers divided into four groups:PC(NE-challenged),SA(500 mg/kg salinomycin premix^(+)NE-challenged),UA(300 mg/kg usnic acid^(+)NE-challenged),and UTA(300 mg/kg usnic acid^(+)500 mg/kg tannic acid^(+)NE-challenged)groups.Results In the in vitro study,the UA,TA,and UTA treatments significantly increased apoptosis in coccidian oocysts and sporozoites,lowered the mitochondrial membrane potential(P<0.05),and disrupted the oocyst structure compared with those in the NC group.UA and TA had inhibitory effects on C.perfringens,with the strongest inhibition observed in the UTA group.The in vivo results demonstrated that the SA group presented significantly improved growth performance on d 13,21,and 28(P<0.05),whereas the UA and UTA groups presented improvements on d 13 and 21(P<0.05).The SA,UA,and UTA treatments reduced the intestinal lesion scores by d 28 and the fecal coccidian oocyst counts from d 19 to 21(P<0.05).Compared with the PC group,the UA and UTA groups presented lower intestinal sIgA levels and CD8^(+)cell percentages(P<0.05),with a trend toward a reduced CD3^(+)cell percentage(P=0.069).The SA,UA,and UTA treatments significantly reduced the serum diamine oxidase activity,crypt depth,and plateletderived growth factor levels in the intestinal mucosa while increasing the villus height to crypt depth ratio and number of goblet cells(P<0.05).The UTA treatment also significantly increased the acetate and butyrate concentrations in the cecum(P<0.05).With respect to the gut microbiota,significant changes inβdiversity in the ileum and cecum were observed in the SA,UA,and UTA groups,indicating that the microbial community compositions differed among the groups.Romboutsia dominated the SA group,Bacillales dominated the UA group,and Lactobacillales and Lachnospirales dominated the UTA group in the ileal microbiota.In the cecal microbiota,Lactobacillus,Butyricicoccus,and Blautia abundances were significantly elevated in the UTA group(P<0.05).Conclusion Usnic acid and tannic acid induce apoptosis in coccidia and sporozoites by lowering the mitochondrial membrane potential.Both usnic acid alone and in combination with tannic acid alleviate NE-induced adverse effects in broilers by modulating intestinal immunity,altering the microbial composition,and improving intestinal barrier function.Compared with usnic acid alone,the combination of usnic acid and tannic acid had superior effects,providing a promising basis for the development of effective feed additive combinations. 展开更多
关键词 Broiler chickens Intestinal health Necrotic enteritis Tannic acid Usnic acid
在线阅读 下载PDF
Insight into leaching rare earth from ion-adsorption type rare earth ores with citric acid:Performance,kinetic analysis and differentiation leaching 被引量:1
9
作者 Mengfei Zhao Zedong Teng +4 位作者 Xingyu Ma Xiaoliang Jiang Hualin Zhang Youming Yang Tinggang Li 《Journal of Rare Earths》 2025年第3期591-602,I0007,共13页
The rare earth elements(REEs)extraction by chemical leaching from ion-adsorption type rare earth ores(IAREO)has led to serious ecological and environmental risks.Conversely,demand for bioleaching is on the rise with t... The rare earth elements(REEs)extraction by chemical leaching from ion-adsorption type rare earth ores(IAREO)has led to serious ecological and environmental risks.Conversely,demand for bioleaching is on the rise with the advantage of being environmental-friendly.As one of the organic acids produced by biological metabolism,citric acid was used to leach REEs and explore the performance and process.The results demonstrate that citric acid exhibits higher leaching efficiency(96.00%)for REEs at a relatively low concentration of 0.01 mol/L compared with(NH_(4))_(2)SO_(4)(84.29%,0.1 mol/L)and MgSO_(4)(83.99%,0.1 mol/L).Citric acid shows a preference for leaching heavy rare earth elements,with 99%leaching efficiency in IAREO,which shows higher capacity than(NH_(4))_(2)SO_(4)and MgSO_(4)(as inorganic leaching agents).Kinetic analysis indicates that the leaching process of REEs with citric acid is controlled by both the internal diffusion kinetics and chemical reaction kinetics,which is different from inorganic leaching agents.Visual Minteq calculations confirm that RE-Citrate is the main constituent of the extract solution in the leaching process of the IAREO,thereby enhancing the leaching efficiency of REEs from the IAREO.It suggests that citric acid may be used as a promising organic leaching agent for the environmentalfriendly extraction of REEs from IAREO. 展开更多
关键词 Ion-adsorption type rare earth ores Rare earths Citric acid COMPLEXATION Organic acid Differential leaching
原文传递
Polyamino acid-mediated crystallization and crystal stabilization in perovskite for efficient and stable photovoltaic devices 被引量:1
10
作者 Chaoyang Wu Chao Wang +3 位作者 Feifan Chen Xinhe Dong Jiajiu Ye Haiying Zheng 《Journal of Semiconductors》 2025年第5期103-111,共9页
Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal qualit... Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal quality triggered structural instability. Herein, to address the structural instability of perovskites, we introduced a polymer additive, poly-L-lysine hydrobromide(PLL), into the perovskite precursor to promote perovskite crystal growth, thereby constructing a stable crystal structure. The results show that the introduction of PLL modulates the colloidal aggregation state in the precursor solution, provides longer time for growth of perovskite and successfully realizes the formation of large-sized perovskite films with high crystallinity. More importantly, owing to its hydrophobic long-chain structure and the widespread distribution of C=O and NH on the chain, PLL firmly locks the perovskite crystals, enhancing their structural stability while blocking the intrusion of external factors such as water molecules, significantly enhances the overall stability of the device. The results show that the PLL-based PSC has negligible hysteresis and its PCE is improved from 22.20% to 23.66%. while the PLL-modified perovskite films and devices demonstrate excellent thermal and environmental stability. These findings highlight PLL as a promising additive for optimizing perovskite crystallization, offering guidance for fabricating efficient and stable photovoltaic devices. 展开更多
关键词 perovskite solar cells polyamino acid ADDITIVE CRYSTALLIZATION stability
在线阅读 下载PDF
Dietary ferulic acid supplementation enhances antioxidant capacity and alleviates hepatocyte pyroptosis in diquat challenged piglets 被引量:1
11
作者 Junqiu Luo Xiu Wu +2 位作者 Daiwen Chen Bing Yu Jun He 《Journal of Animal Science and Biotechnology》 2025年第1期377-387,共11页
Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxida... Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets. 展开更多
关键词 Antioxidant capacity Ferulic acid Hepatic pyroptosis PIGLETS
在线阅读 下载PDF
Plasma L-aspartic acid predicts the risk of gastric cancer and modifies the primary prevention effect:a multistage metabolomic profiling and Mendelian randomization study 被引量:1
12
作者 Mengyuan Wang Zhouyi Yin +8 位作者 Hengmin Xu Zongchao Liu Sha Huang Wenhui Wu Yang Zhang Tong Zhou Weicheng You Kaifeng Pan Wenqing Li 《Cancer Biology & Medicine》 2025年第5期525-538,共14页
Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether k... Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether key metabolite levels modified the GC primary prevention effects.Methods:Plasma metabolites associated with GC risk were identified through a case-control study.Bi-directional two-sample Mendelian randomization analyses were performed to determine potential causal relationships utilizing the Shandong Intervention Trial(SIT),a nested case-control study of the Mass Intervention Trial in Linqu,Shandong province(MITS),China,the UK Biobank,and the Finn Gen project.Results:A higher genetic risk score for plasma L-aspartic acid was significantly associated with an increased GC risk in the northern Chinese population(SIT:HR=1.26 per 1 SD change,95%CI:1.07±1.49;MITS:HR=1.07,95%CI:1.00±1.14)and an increased gastric adenocarcinoma risk in Finn Gen(OR=1.68,95%CI:1.16±2.45).Genetically predicted plasma L-aspartic acid levels also modified the GC primary prevention effects with the beneficial effect of Helicobacter pylori eradication notably observed among individuals within the top quartile of L-aspartic acid level(P-interaction=0.098)and the beneficial effect of garlic supplementation only for those within the lowest quartile of L-aspartic acid level(P-interaction=0.02).Conclusions:Elevated plasma L-aspartic acid levels significantly increased the risk of developing GC and modified the effects of GC primary prevention.Further studies from other populations are warranted to validate the modification effect of plasma L-aspartic acid levels on GC prevention and to elucidate the underlying mechanisms. 展开更多
关键词 Gastric cancer plasma metabolites Mendelian randomization L-aspartic acid
暂未订购
Impact of Bentonite and Humic Acid on the Growth and Flowering of Catharanthus roseus L. in Sandy Soil 被引量:1
13
作者 Raad Farhan Shahad Mohammed Malik Hamid 《Journal of Environmental & Earth Sciences》 2025年第1期157-166,共10页
Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of th... Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition. 展开更多
关键词 BENTONITE Humic acid Sandy Soil Catharanthus roseus L.
在线阅读 下载PDF
Associations of polycyclic aromatic hydrocarbons exposure with serum uric acid and hyperuricemia in US adults:The role of systemic inflammation 被引量:1
14
作者 Yang Liu Xuejie Ding +7 位作者 Linling Yu Da Shi Ruyi Liang Wei Liu Xuezan Huang Xiuyu Cao Min Zhou Weihong Chen 《Journal of Environmental Sciences》 2025年第4期412-421,共10页
The associations of polycyclic aromatic hydrocarbon(PAH)exposure with serum uric acid(SUA)or hyperuricemia have been rarely assessed.We aimed to investigate the relationships between urinary PAH metabolites and SUA or... The associations of polycyclic aromatic hydrocarbon(PAH)exposure with serum uric acid(SUA)or hyperuricemia have been rarely assessed.We aimed to investigate the relationships between urinary PAH metabolites and SUA or hyperuricemia among US adults and to explore the mediating role of systemic inflammation in the associations.A total of 10,307 US adults were conducted to assess the associations of seven urinary hydroxy–PAH with SUA and hyperuricemia and evaluate the role of C-reactive protein(CRP),a biomarker of systemic inflammation,in such associations.Results showed that each 1-unit increase in ln-transformed 2-hydroxynaphthalene(2-OHNa),1-hydroxyphenanthrene(1-OHPh),2&3-hydroxyphenanthrene(2&3-OHPh)and total hydroxyphenanthrene(OHPh)was associated with a 1.68(95%confidence interval(CI):0.19 to 3.17),2.46(0.78 to 4.13),3.34(1.59 to 5.09),and 2.99(1.23 to 4.75)μmol/L increase in SUA,and a 8%(odds ratio(OR):1.08,1.02 to 1.15),9%(OR:1.09,1.02 to 1.18),13%(OR:1.13,1.05 to 1.22),and 12%(OR:1.12,95%CI:1.03,1.21)increase in hyperuricemia,respectively.Co-exposure of seven PAHs was positively associated with SUA and hyperuricemia,with 2&3-OHPh showing the highest weight(components weights:0.83 and 0.78,respectively).The CRP mediated 11.47%and 10.44%of the associations ofΣOHPh and 2&3-OHPh with SUA and mediated 8.60%and 8.62%in associations ofΣOHPh and 2&3-OHPh with hyperuricemia,respectively.In conclusion,internal levels of PAH metabolites were associated with elevated SUA levels and the increased risk of hyperuricemia among US adults,and CRP played a mediating role in the associations. 展开更多
关键词 Polycyclic aromatic hydrocarbon Serum uric acid HYPERURICEMIA C-reactive protein General population
原文传递
Engineering crystal plane of NiCo_(2)O_(4)to regulate oxygen vacancies and acid sites for alkali-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid 被引量:1
15
作者 Hengli Qian keyuan Zhang +8 位作者 Yongchuo He Qidong Hou Chao Xie Ruite Lai Guanjie Yu Tianliang Xia Xinyu Bai Haijiao Xie Meiting Ju 《Green Energy & Environment》 2025年第4期756-765,共10页
The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire ... The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL 2 5-furandicarboxylic acid NiCo_(2)O_(4) Catalytic oxidation Crystal plane
在线阅读 下载PDF
Significantly enhanced low-temperature activity and SO_(2)/H_(2)O tolerance of Mn-Ce-O_(x)/TiO_(2)catalysts prepared by a facile citric acid assisted impregnation method 被引量:1
16
作者 Huiyuan Li Weihui Ren +2 位作者 Hongyan Xue Jun Yu Dongsen Mao 《Journal of Rare Earths》 2025年第6期1195-1204,I0004,共11页
Two different Mn-Ce-O_(x)/TiO_(2) catalysts were prepared by ordinary impregnation(denoted as MCT) and citric acid assisted impregnation(denoted as MCT-CA) methods,respectively.Excellent NOxremoval is achieved over MC... Two different Mn-Ce-O_(x)/TiO_(2) catalysts were prepared by ordinary impregnation(denoted as MCT) and citric acid assisted impregnation(denoted as MCT-CA) methods,respectively.Excellent NOxremoval is achieved over MCT-CA for selective catalytic reduction with NH3(NH_(3)-SCR),and 100% NOxconversion is obtained at 125℃ under weight hour space velocity(WHSV) of 80000 mL/(gcat·h).Particularly,100% NOxis converted on MCT-CA in the presence of 10 vol% H2O at 175℃.As H2O and SO2coexist in the reaction system for 9 h,NO_(x) conversion can still be maintained>90%,much higher than that(22%) of MCT.A series of characterization results indicates that MCT-CA exhibits a larger BET specific surface area,pore volume,and pore size,which enhances the dispersion of Mn and Ce oxides and promotes the rapid adsorption of reactants and desorption of products.Additionally,MCT-CA possesses more Mn^(4+),Ce^(3+),chemisorbed oxygen species,and stronger reducibility,facilitating the co nversion of NO to NO_(2).Specially,the amount of active NH_(3) species and active nitrate species on MCT-CA is much more than that over MCT,The combined effect of the aforementioned factors devotes to the excellent low-temperature SCR performance and tolerance to H2O/SO2over MCT-CA. 展开更多
关键词 NH_(3)-SCR Low-temperaturede-NO_(x) Mn-Ce-O_(x)/TiO_(2) Citric acid Impregnation Rare earths
原文传递
Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke
17
作者 Lin-Yan Huang Yi-De Zhang +9 位作者 Jie Chen Hai-Di Fan Wan Wang Bin Wang Ju-Yun Ma Peng-Peng Li Hai-Wei Pu Xin-Yian Guo Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS 2025年第3期845-857,共13页
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ... It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function. 展开更多
关键词 cell differentiation cerebral ischemia/reperfusion injury CHLORINATION hypochlorous acid MICROGLIA neural stem cell NEUROGENESIS nuclear translocation stroke β-catenin
暂未订购
Enhanced autophagic clearance of amyloid-βvia histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo
18
作者 Zhimin Long Chuanhua Ge +5 位作者 Yueyang Zhao Yuanjie Liu Qinghua Zeng Qing Tang Zhifang Dong Guiqiong He 《Neural Regeneration Research》 SCIE CAS 2025年第9期2633-2644,共12页
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct... Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification. 展开更多
关键词 Alzheimer's disease amyloid-β APP/PS1 mice autophagy cognitive impairment histone deacetylase 6 lysosomal acidification microtubule acetylation valproic acid V-ATPASE
暂未订购
Short-chain fatty acids mediate enteric and central nervous system homeostasis in Parkinson’s disease:Innovative therapies and their translation 被引量:1
19
作者 Shimin Pang Zhili Ren +1 位作者 Hui Ding Piu Chan 《Neural Regeneration Research》 2026年第3期938-956,共19页
Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’... Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease. 展开更多
关键词 ALPHA-SYNUCLEIN blood-brain barrier blood circulation central nervous system ENDOCRINE enteric nervous system glial cell gut-brain axis gut microbiota intestinal barrier neuron Parkinson’s disease short chain fatty acids vagus nerve
暂未订购
Gallic acid suppresses esophageal squamous cell carcinoma progression and enhances cisplatin chemosensitivity through IL-6/STAT3/Notch pathway 被引量:1
20
作者 NURAN BEDOLLA HAO WU +2 位作者 LINYU LIU XUETING LIU YANLI REN 《Oncology Research》 2025年第6期1473-1484,共12页
Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell... Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell carcinoma(ESCC)cells to cisplatin(DDP)is not well understood.Methods:Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability.5-Ethynyl-2′-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis.Clone formation assay,flow cytometry,Carboxyfluorescein diacetate succinimidyl ester fluorescent probes,and Transwell assay determined cell biological properties,and 2′,7′-Dichlorofluorescin diacetate(DCFH-DA)fluorescent probes detected oxidative stress levels.Signal transducer and activator of transcription 3(STAT3)/Notch pathway protein levels after GA and/or Interleukin-6(IL-6)intervention were examined through Western blot.Furthermore,a model for subcutaneous graft tumors was established in nude mice.Results:GA exerted suppressive effects on cell proliferation,and caused apoptosis of KYSE30 and TE-1 cells.IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells.In contrast,GA attenuated the effects of IL-6,while STAT3 or Notch inhibitor further enhanced the effects of GA,suggesting that GA inhibited the IL-6/STAT3/Notch pathway.Not only that,GA promoted oxidative stress and enhanced cell sensitivity to DDP both in vitro and in vivo.Conclusion:GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway. 展开更多
关键词 Gallic acid(GA) CISPLATIN Esophageal cancer Interleukin-6(IL-6) Chemotherapy sensitivity Signal transducer and activator of transcription 3(STAT3)/Notch pathway
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部