The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catal...The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.展开更多
The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and ch...The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.展开更多
Angioedema is a known side effect of angiotensin-converting enzyme inhibitors (ACE-I). However, trauma precipitating angioedema is a rare event. We detail a case of trauma-induced angioedema in a patient taking an ACE...Angioedema is a known side effect of angiotensin-converting enzyme inhibitors (ACE-I). However, trauma precipitating angioedema is a rare event. We detail a case of trauma-induced angioedema in a patient taking an ACE-I. Specifically, a patient presented to the emergency department (ED) having suffered a seizure from symptomatic hyponatremia;later, the patient precipitously developed angioedema requiring nasotracheal intubation. Herein, the mechanisms and treatments for angioedema are discussed. Acute angioedema is important to the emergency medicine physician because quick recognition, regardless of its precipitant can stave off untoward complications, possible respiratory failure and airway emergencies.展开更多
文摘The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.
基金supported by the Public Science and Technology Research Funds (Projects of Ocean)State Ocean Administration of P. R. China (Nos. 201305007 and 201405017)+3 种基金National High Technology Research and Development Program of China (No. 2013AA093003)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Qinglan ProjectJiangsu 333 Project
文摘The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.
文摘Angioedema is a known side effect of angiotensin-converting enzyme inhibitors (ACE-I). However, trauma precipitating angioedema is a rare event. We detail a case of trauma-induced angioedema in a patient taking an ACE-I. Specifically, a patient presented to the emergency department (ED) having suffered a seizure from symptomatic hyponatremia;later, the patient precipitously developed angioedema requiring nasotracheal intubation. Herein, the mechanisms and treatments for angioedema are discussed. Acute angioedema is important to the emergency medicine physician because quick recognition, regardless of its precipitant can stave off untoward complications, possible respiratory failure and airway emergencies.