This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator u...This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results.展开更多
This paper explores the investors' feedback to the price change by modelling the price- related dynamics of trading intensity. A component decomposition duration modeling approach, called the component autoregressive...This paper explores the investors' feedback to the price change by modelling the price- related dynamics of trading intensity. A component decomposition duration modeling approach, called the component autoregressive conditional duration (CACD) model, is proposed to capture the variation of trading intensity across time intervals between price change events. Based on the CACD model, an empirical analysis is carried out on the Chinese stock market that covers different market statuses. The empirical results suggest that the CACD model can capture the price-related dynamics of trading intensity, which supports the existence of the feedback effect and is robust across different market statuses. The authors also study how the investors react to the price change by examining the driven factors of the price-related dynamics of trading intensity. The authors find that the trading can be triggered by the fast rise in the price level and the high trading volume. Besides, investors are more sensitive to the price change direction in the sideways market than in the upward or downward markets.展开更多
基金The research was supported by the National Natural Science Foundation of China(11690014,11690015,10871188)the Research Funds of Renmin University of China(No.16XNB025)the Social Science Foundation of Beijing(No.17GLB022)
文摘This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results.
基金supported by the National Science Foundation of China under Grant Nos.71201161 and71671183
文摘This paper explores the investors' feedback to the price change by modelling the price- related dynamics of trading intensity. A component decomposition duration modeling approach, called the component autoregressive conditional duration (CACD) model, is proposed to capture the variation of trading intensity across time intervals between price change events. Based on the CACD model, an empirical analysis is carried out on the Chinese stock market that covers different market statuses. The empirical results suggest that the CACD model can capture the price-related dynamics of trading intensity, which supports the existence of the feedback effect and is robust across different market statuses. The authors also study how the investors react to the price change by examining the driven factors of the price-related dynamics of trading intensity. The authors find that the trading can be triggered by the fast rise in the price level and the high trading volume. Besides, investors are more sensitive to the price change direction in the sideways market than in the upward or downward markets.