期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于双目视觉的三维车辆检测算法 被引量:1
1
作者 陶洋 汤新玲 《微电子学与计算机》 2024年第5期40-48,共9页
在自动驾驶中,车辆的三维目标检测是一项重要的场景理解任务。相比于昂贵的雷达设备,借助双目设备的三维目标检测方法有成本低定位准确的特点。基于立体区域卷积神经网络(Stereo RCNN)提出了一种用于双目视觉的三维目标检测OC-3DNet算法... 在自动驾驶中,车辆的三维目标检测是一项重要的场景理解任务。相比于昂贵的雷达设备,借助双目设备的三维目标检测方法有成本低定位准确的特点。基于立体区域卷积神经网络(Stereo RCNN)提出了一种用于双目视觉的三维目标检测OC-3DNet算法,有效地提高了检测精度。针对特征提取高分辨率与感受野的矛盾,结合特征提取网络与注意力引导特征金字塔(AC-FPN),有效地提高了算法对小目标的检测精度。针对三维中心投影检测误差大的问题,建立了一种新的三维中心投影与二维中心的约束关系,进一步提升了三维目标检测的精度。实验结果表明,改进后的OC-3DNet算法在以0.7为阈值的三维目标检测上平均精度为43%,较Stereo R-CNN三维目标检测的平均精度提升了约3%。 展开更多
关键词 双目视觉 三维目标检测 ac-fpn 三维中心点预测
在线阅读 下载PDF
基于改进YOLACT的堆叠零件实例分割算法
2
作者 张笑尘 晁永生 +3 位作者 李豪玉 周方圆 李学玮 王传钊 《组合机床与自动化加工技术》 北大核心 2024年第12期35-40,共6页
为了解决堆叠环境下零件实例分割精度差的问题,提出了一种改进YOLACT算法。通过在主干网络中C3和C4层引入多级特征融合与通道注意力机制模块(MLCA),优化了特征提取的精度。为了在保证图像同时获取多感受野信息,采用上下文特征金字塔模块... 为了解决堆叠环境下零件实例分割精度差的问题,提出了一种改进YOLACT算法。通过在主干网络中C3和C4层引入多级特征融合与通道注意力机制模块(MLCA),优化了特征提取的精度。为了在保证图像同时获取多感受野信息,采用上下文特征金字塔模块(AC-FPN)结构替代传统FPN金字塔,获取更多感受野,以准确完成预测。通过自制堆叠零件数据集完成网络训练与实验。对比实验表明,改进后的YOLACT算法在未明显提升运行时间的基础上,相较原算法表现出更优的检测与分割效果。 展开更多
关键词 堆叠零件 实例分割 YOLACT MLCA ac-fpn
在线阅读 下载PDF
基于GA-RetinaNet的水下目标检测 被引量:7
3
作者 袁明阳 宋亚林 +2 位作者 张潮 沈兴盛 李世昌 《计算机系统应用》 2023年第6期80-90,共11页
水下目标自动检测方法对海洋智能捕捞工作发挥着重要作用,针对现有目标检测方法存在的对水下生物检测精度不高问题,提出了一种GA-RetinaNet算法的水下目标检测方法.首先,针对水下图像存在密集目标的特点,通过引入分组卷积替换普通卷积,... 水下目标自动检测方法对海洋智能捕捞工作发挥着重要作用,针对现有目标检测方法存在的对水下生物检测精度不高问题,提出了一种GA-RetinaNet算法的水下目标检测方法.首先,针对水下图像存在密集目标的特点,通过引入分组卷积替换普通卷积,在不增加参数复杂度的基础上得到更多特征图,提高模型的检测精度;其次,根据水下生物多为小目标生物的特点,引入上下文特征金字塔模块(AC-FPN),利用上下文提取模块保证高分辨率输入的同时获得多个感受野,提取到更多上下文信息,并通过上下文注意力模块和内容注意力模块从中捕获有用特征,准确定位到目标位置.实验结果显示,选用URPC2021数据集进行实验,改进的GA-RetinaNet算法比原算法检测精度提高了2.3%.相比其他主流模型,该算法对不同类型的水下目标均获得了较好的检测结果,检测精度有较大提升. 展开更多
关键词 目标检测 水下图像 RetinaNet 分组卷积 ac-fpn
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部