The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMC...The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.展开更多
Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing hi...Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing highly active,selective and cost-effective electrocatalysts.The electrosynthesis of H2O2 in acidic media is more practical owing to its stability and no need for further purification.We herein report a phosphorus and selenium tuning Co-based non-precious catalyst(CoPSe)toward two-electron oxygen reduction reaction(2e–ORR)to produce H2O2 in acidic media.The starting point of using both P and Se is finding a balance between strong ORR activity of CoSe and weak activity of CoP.The results demonstrated that the CoPSe catalyst exhibited the optimized 2e–ORR activity compared with CoP and CoSe.It disclosed an onset potential of 0.68 V and the H2O2 selectivity 76%-85%in a wide potential range(0–0.5 V).Notably,the CoPSe catalyst overcomes a significant challenge of a narrow-range selectivity for transitionmetal based 2e–ORR catalysts.Finally,combining with electro-Fenton reaction,an on-site system was constructed for efficient degradation of organic pollutants.This work provides a promising non-precious Co-based electrocatalyst for the electrosynthesis of H2O2 in acidic media.展开更多
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obt...Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.展开更多
文摘The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.
基金the National Natural Science Foundation of China(Nos.21805052,21974031,2278092)Science and Technology Research Project of Guangzhou(Nos.202102020787 and 202201000002)+2 种基金Department of Science&Technology of Guangdong Province(No.2022A156)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.20225546)the Innovation&Entrepreneurship for the College Students of Guangzhou University(No.XJ202111078175).
文摘Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing highly active,selective and cost-effective electrocatalysts.The electrosynthesis of H2O2 in acidic media is more practical owing to its stability and no need for further purification.We herein report a phosphorus and selenium tuning Co-based non-precious catalyst(CoPSe)toward two-electron oxygen reduction reaction(2e–ORR)to produce H2O2 in acidic media.The starting point of using both P and Se is finding a balance between strong ORR activity of CoSe and weak activity of CoP.The results demonstrated that the CoPSe catalyst exhibited the optimized 2e–ORR activity compared with CoP and CoSe.It disclosed an onset potential of 0.68 V and the H2O2 selectivity 76%-85%in a wide potential range(0–0.5 V).Notably,the CoPSe catalyst overcomes a significant challenge of a narrow-range selectivity for transitionmetal based 2e–ORR catalysts.Finally,combining with electro-Fenton reaction,an on-site system was constructed for efficient degradation of organic pollutants.This work provides a promising non-precious Co-based electrocatalyst for the electrosynthesis of H2O2 in acidic media.
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金supported by the National Key Research and Development Program of China(2020YFD1100501)Thanks zkec(www.zjkec.cc)for XRD.
文摘Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.