Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on ex...Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.展开更多
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysi...Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.展开更多
A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed...A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed.The CNT content was fixed at 4.0 wt.%,and CFs having three different lengths(0.1,3 and 6 mm)at dosage of 1.0 wt.%were added to fabricate the specimens.The self-heating properties of the specimens were evaluated via self-heating tests.Based on the experiment results,two types of artificial neural network(ANN)models were constructed to predict the surface temperature and electrical resistance,and to detect a severe NTC effect.The present predictions were compared with experimental values to verify the applicability of the proposed ANN models.The ANN model for data prediction was able to predict the surface temperature and electrical resistance closely,with corresponding R-squared value of 0.91 and 0.97,respectively.The ANN model for data detection could detect the severe NTC effect occurred in the nanocomposites under the self-heating condition,as evidenced by the accuracy and sensitivity values exceeding 0.7 in all criteria.展开更多
In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials ...In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 ℃, 239 ℃, 220 ℃ and 220 ℃, respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the reliability of measured results.展开更多
单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,...单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。展开更多
For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasm...For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.展开更多
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio...To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.展开更多
The self-heating effect severely limits device performance and reliability.Although some studies have revealed the heat distribution ofβ-Ga_(2)O_(3) MOSFETs under biases,those devices all have small areas and have di...The self-heating effect severely limits device performance and reliability.Although some studies have revealed the heat distribution ofβ-Ga_(2)O_(3) MOSFETs under biases,those devices all have small areas and have difficulty reflecting practical con-ditions.This work demonstrated a multi-fingerβ-Ga_(2)O_(3) MOSFET with a maximum drain current of 0.5 A.Electrical characteris-tics were measured,and the heat dissipation of the device was investigated through infrared images.The relationship between device temperature and time/bias is analyzed.展开更多
CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a m...CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.展开更多
基金made possible through a visiting postdoctoral fellowship to A.H. Ozdeniz by the Scientific and Technological Research Council of Turkey (TUBITAK)An operating research grant through the Natural Sciences and Engineering Council of Canada (NSERC) is also acknowledged
文摘Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant No.91850112)+3 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161401)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Science and Technology Project of State Grid Corporation of China(Grant No.SGSDDK00KJJS1600071)the Fundamental Research Funds for the Central Universities,China(Grant No.14380098)
文摘Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.
基金This research was supported by Chungbuk National University Korea National University Development Project(2021).
文摘A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient(NTC)effect detection of nanocomposites incorporating carbon nanotube(CNT)and carbon fiber(CF)is proposed.The CNT content was fixed at 4.0 wt.%,and CFs having three different lengths(0.1,3 and 6 mm)at dosage of 1.0 wt.%were added to fabricate the specimens.The self-heating properties of the specimens were evaluated via self-heating tests.Based on the experiment results,two types of artificial neural network(ANN)models were constructed to predict the surface temperature and electrical resistance,and to detect a severe NTC effect.The present predictions were compared with experimental values to verify the applicability of the proposed ANN models.The ANN model for data prediction was able to predict the surface temperature and electrical resistance closely,with corresponding R-squared value of 0.91 and 0.97,respectively.The ANN model for data detection could detect the severe NTC effect occurred in the nanocomposites under the self-heating condition,as evidenced by the accuracy and sensitivity values exceeding 0.7 in all criteria.
基金Project(51304238)supported by the National Natural Science Foundation of ChinaProject(JSK200206)supported by the Foundation of Key Laboratory of Mine Thermo-motive Disaster and Prevention,Ministry of Education,China
文摘In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 ℃, 239 ℃, 220 ℃ and 220 ℃, respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the reliability of measured results.
文摘单级式双有源桥(dual active bridge,DAB)DC/AC变换器控制自由度多,变压器匝比、漏感、开关频率等参数相互耦合,导致变换器效率优化面临多重制约。该文分析变压器匝比、漏感与软开关范围、漏感电流有效值、漏感电流峰值之间的约束关系,提出直接表征DAB-DC/AC变换器效率的物理量:效率敏感因子。通过研究效率敏感因子对系统损耗的影响机理,实现变换器效率最优的硬件参数设计,为多参数耦合的单级式DAB-DC/AC变换器效率优化提供理论指导。最后通过一台450 W样机验证所提理论的正确性。
基金supported by National Natural Science Foundation of China (No.10905044)
文摘For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.
基金funded by the National Key Research and Development Program of China(2018YFB0104400)supported by the Beijing Natural Science Foundation(2214066)。
文摘To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.61925110,62004184 and 62234007the Key-Area Research and Development Program of Guangdong Province under Grant No.2020B010174002.
文摘The self-heating effect severely limits device performance and reliability.Although some studies have revealed the heat distribution ofβ-Ga_(2)O_(3) MOSFETs under biases,those devices all have small areas and have difficulty reflecting practical con-ditions.This work demonstrated a multi-fingerβ-Ga_(2)O_(3) MOSFET with a maximum drain current of 0.5 A.Electrical characteris-tics were measured,and the heat dissipation of the device was investigated through infrared images.The relationship between device temperature and time/bias is analyzed.
文摘CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.