Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were ...Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were developed by empirical reasoning without rigorous theoretical analysis. Hence in this letter, hierarchical-infeed interactive effective short-circuit ratio (HIESCR) index is first used for strength evaluation of HIDC systems with complex inter-inverter interactions considered. Boundary HIESCR (BHIESCR) is also introduced in the proposed distinction method of weak and strong AC grids. That is, weak (or strong) AC grids are, respectively, identified when HIESCR is less (or greater) than BHIESCR. Second, it is shown BHIESCR remains almost unchanged as 3.0 versus various system parameters and rated operation variables based on rigorous theoretical analysis. This salient feature makes the proposed method more accurate than earlier methods. Finally, the proposed method is validated by simulations based on the PSCAD/EMTDC program.展开更多
A small-signal model of photovoltaic(PV)generation connected to weak AC grid is established based on a detailed model of the structure and connection of a PV generation system. An eigenvalue analysis is then employed ...A small-signal model of photovoltaic(PV)generation connected to weak AC grid is established based on a detailed model of the structure and connection of a PV generation system. An eigenvalue analysis is then employed to study the stability of PV generation for different grid strengths and control parameters in a phaselocked loop(PLL) controller in the voltage source converter. The transfer function of the power control loop in the dq rotation frame is developed to reveal the influence mechanism of PLL gains on the small-signal stability of PV generation. The results can be summarized as follows:(1)oscillation phenomena at a frequency of about 5 Hz may occur when the grid strength is low;(2) the tuning control parameters of the PLL have a noticeable effect on the damping characteristics of the system, and larger proportional gain can improve the system damping;(3)within a frequency range of 4-5 Hz,the PLL controller has positive feedback on the power loop of PV generation. A virtual inductance control strategy is proposed to improve the operational stability of PV generation. Finally, a simulation model of PV generation connected to weak AC grid is built in PSCAD/EMTDC and the simulation results are used to validate the analysis.展开更多
China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so...China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so long-distance and bulk power transmission are needed; besides, the geography and climate conditions are serious, rains, fogs, lightning and typhoon as well as high temperature are common all the year round. Facing these challenges, the power grid enhanced stability control, improved the equipment and strengthen the network structure. In the future, the power grid plans to optimize the disposition of power sources and build digitalized power system.展开更多
In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generatio...In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generation in form of distributed generation and Smart Power Grid (SPG) has great opportunity and potentially can eradicate several issues associated with energy efficiency, energy security and the drawback of aging power system infrastructures. In order to meet the rising electrical power demand and increasing service quality as well as reducing pollution, the existing power grid infrastructure should be developed into Smart Grid (SG) that is flexible for interconnectivity with the distributed generation. However, integrating distributed generation to power system causes several technical issues especially system stability. To make the power grid become “smarter”, particularly in terms of stability, Flexible AC Transmission System (FACTS) device especially Static VAR Compensator (SVC) is used. This paper explores Smart Grid technologies and distributed generation systems. Furthermore, it discusses the impact of distributed generation on Smart Grid, particularly its system stability after installing distributed generation in the Smart Grid. This was done by examining the system stability during interconnection and faults on the system and validated with Dig-SILENT Power Factory Software V 13.2.展开更多
It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Togeth...It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Together with the change on demand side that comes with the global "electrification", this can lead to serious grid congestion in low voltage grids and massive grid investments in solving this congestion. Smart charging can partly solve this issue, but with using a connected EV (electric vehicle) as a small distribution unit, combined with bi-directional charging or V2G (vehicle-to-grid) technology, these investments can be reduced to a minimum. In Lombok, Utrecht, the Netherlands, an innovative pilot was initiated with smart solar charging stations, shared electric vehicles and AC (alternating current) V2G technology. This unique combination proves that EVs are an opportunity for the grid rather than a threat. A unique partnership with OEM Renault was established to develop an AC V2G vehicle product line and work on open standardized communication between the EV, the charging station and the grid.展开更多
Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-in...Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-informed agent-based model (ABM) developed in NetLogo. Results show that decentralised control architectures stimulate minigrid formations and connections by allowing easy expansions of the minigrids as each decentralised PV system within a minigrid is treated equally and determines its own real and reactive power, eliminating the need for communication links. This also reduces the cost of implementing such a system;fewer connections are realized with centralised controls as such systems require high speed communication links which make them both difficult to expand and expensive to implement. Results also show that multi-master operation modes lead to more communal grid connections compared to single-master operation modes because in the former, all distributed PV systems within a communal grid have the same rank and can act as masters or can be operated as combinations of master generators (VSIs) and PQ inverters, allowing for more design flexibility and easy connections from potential customers.展开更多
基金supported in part by the National Natural Science Foundation of China(51907067)in part by the Industrial Research Chair Program of the Natural Sciences and Engineering Research Councilof Canada。
文摘Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were developed by empirical reasoning without rigorous theoretical analysis. Hence in this letter, hierarchical-infeed interactive effective short-circuit ratio (HIESCR) index is first used for strength evaluation of HIDC systems with complex inter-inverter interactions considered. Boundary HIESCR (BHIESCR) is also introduced in the proposed distinction method of weak and strong AC grids. That is, weak (or strong) AC grids are, respectively, identified when HIESCR is less (or greater) than BHIESCR. Second, it is shown BHIESCR remains almost unchanged as 3.0 versus various system parameters and rated operation variables based on rigorous theoretical analysis. This salient feature makes the proposed method more accurate than earlier methods. Finally, the proposed method is validated by simulations based on the PSCAD/EMTDC program.
基金supported by State Grid Corporation of China ‘‘Study on active frequency and voltage control technologies for second level power disturbance in photovoltaic power plant’’National Natural Science Foundation of China (No. 51277024)
文摘A small-signal model of photovoltaic(PV)generation connected to weak AC grid is established based on a detailed model of the structure and connection of a PV generation system. An eigenvalue analysis is then employed to study the stability of PV generation for different grid strengths and control parameters in a phaselocked loop(PLL) controller in the voltage source converter. The transfer function of the power control loop in the dq rotation frame is developed to reveal the influence mechanism of PLL gains on the small-signal stability of PV generation. The results can be summarized as follows:(1)oscillation phenomena at a frequency of about 5 Hz may occur when the grid strength is low;(2) the tuning control parameters of the PLL have a noticeable effect on the damping characteristics of the system, and larger proportional gain can improve the system damping;(3)within a frequency range of 4-5 Hz,the PLL controller has positive feedback on the power loop of PV generation. A virtual inductance control strategy is proposed to improve the operational stability of PV generation. Finally, a simulation model of PV generation connected to weak AC grid is built in PSCAD/EMTDC and the simulation results are used to validate the analysis.
文摘China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so long-distance and bulk power transmission are needed; besides, the geography and climate conditions are serious, rains, fogs, lightning and typhoon as well as high temperature are common all the year round. Facing these challenges, the power grid enhanced stability control, improved the equipment and strengthen the network structure. In the future, the power grid plans to optimize the disposition of power sources and build digitalized power system.
文摘In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generation in form of distributed generation and Smart Power Grid (SPG) has great opportunity and potentially can eradicate several issues associated with energy efficiency, energy security and the drawback of aging power system infrastructures. In order to meet the rising electrical power demand and increasing service quality as well as reducing pollution, the existing power grid infrastructure should be developed into Smart Grid (SG) that is flexible for interconnectivity with the distributed generation. However, integrating distributed generation to power system causes several technical issues especially system stability. To make the power grid become “smarter”, particularly in terms of stability, Flexible AC Transmission System (FACTS) device especially Static VAR Compensator (SVC) is used. This paper explores Smart Grid technologies and distributed generation systems. Furthermore, it discusses the impact of distributed generation on Smart Grid, particularly its system stability after installing distributed generation in the Smart Grid. This was done by examining the system stability during interconnection and faults on the system and validated with Dig-SILENT Power Factory Software V 13.2.
文摘It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Together with the change on demand side that comes with the global "electrification", this can lead to serious grid congestion in low voltage grids and massive grid investments in solving this congestion. Smart charging can partly solve this issue, but with using a connected EV (electric vehicle) as a small distribution unit, combined with bi-directional charging or V2G (vehicle-to-grid) technology, these investments can be reduced to a minimum. In Lombok, Utrecht, the Netherlands, an innovative pilot was initiated with smart solar charging stations, shared electric vehicles and AC (alternating current) V2G technology. This unique combination proves that EVs are an opportunity for the grid rather than a threat. A unique partnership with OEM Renault was established to develop an AC V2G vehicle product line and work on open standardized communication between the EV, the charging station and the grid.
文摘随着智能电网的飞速发展,基于制造报文规范(MMS,Manufacturing Message Specification)的IEC61850通信技术得到了越来越广泛的应用。当前电力系统变电站设备多采用面向点的IEC103(IEC60870-5-103)电力规约,因此实现从网络IEC103规约到MMS的IEC61850通信规约的转换具有很大的现实意义。本系统通过对实时数据库进行性能比较和分析,最终选择SQLite作为数据库存储,基于Qt和自适配通信环境(ACE,Adaptive Communication Environment)优异的跨平台性能,采用了模块化和组件式设计,成功实现了跨平台从IEC103规约到MMS转换的通信系统。该通信系统既可跨平台独立运行,也可作为组件在嵌入式装置中运行。
文摘Impacts of grid architectures on temporal diffusion of PV-based communal grids (community owned minigrids or microgrids) in a rural developing community are modelled and simulated using MATLAB/Simulink and a survey-informed agent-based model (ABM) developed in NetLogo. Results show that decentralised control architectures stimulate minigrid formations and connections by allowing easy expansions of the minigrids as each decentralised PV system within a minigrid is treated equally and determines its own real and reactive power, eliminating the need for communication links. This also reduces the cost of implementing such a system;fewer connections are realized with centralised controls as such systems require high speed communication links which make them both difficult to expand and expensive to implement. Results also show that multi-master operation modes lead to more communal grid connections compared to single-master operation modes because in the former, all distributed PV systems within a communal grid have the same rank and can act as masters or can be operated as combinations of master generators (VSIs) and PQ inverters, allowing for more design flexibility and easy connections from potential customers.