AB_(2)-type(A=rare earth,B=transition metal)intermetallic compounds with C15 structure can easily absorb large amount of hydrogen,showing their potential use as hydrogen storage materials.The crucial problem hindering...AB_(2)-type(A=rare earth,B=transition metal)intermetallic compounds with C15 structure can easily absorb large amount of hydrogen,showing their potential use as hydrogen storage materials.The crucial problem hindering their application is hydrogen induced amorphization(HIA),which leads to the irreversible hydrogen sorption process.The stability of the AB_2 Laves phase compounds,the structural properties,the hydrogenation properties and the controlling factors of HIA are discussed in this review.Comparing with other factors,the atomic radii ratio r_A/r_B is the most important one influencing the HIA.Multi-element substitution is an efficient way to suppress or limit HIA and may enable AB_2 compounds to be suitable for hydrogen storage.展开更多
Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hyd...Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2-type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS), and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.展开更多
The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydro...The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy. An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model. The results show that the predicted values are in good agreement with the experimental values. The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.展开更多
High density and safe storage of hydrogen are the preconditions for the large-scale application of hydrogen energy.Herein,the hydrogen storage properties of Ti_(0.6)Zr_(0.4)Cr_(0.6)Mn_(1.4) alloys are systematically s...High density and safe storage of hydrogen are the preconditions for the large-scale application of hydrogen energy.Herein,the hydrogen storage properties of Ti_(0.6)Zr_(0.4)Cr_(0.6)Mn_(1.4) alloys are systematically studied by introducing Y element instead of Ti element through vacuum arc melting.After the partial substitution of Y,a second phase of rare earth oxide is added in addition to the main suction hydrogen phase,C14 Laves phase.Thanks to the unique properties of rare earth elements,the partial substitution of Y can not only improve the activation properties and plateau pressure of the alloys,but also increase the effective hydrogen storage capacity of the alloys.The comprehensive properties of hydrogen storage alloys are improved by multidimensional regulation of rare earth elements.Among them,Ti_(0.552)Y_(0.048)Zr_(0.4)Cr_(0.6)Mn_(1.4) has the best comprehensive performance.The alloy can absorb hydrogen without activation at room temperature and 5 MPa,with a maximum hydrogen storage capacity of 1.98 wt.%.At the same time,it reduces the stability of the hydride and the enthalpy change value,making it easier to release hydrogen.Through theoretical analysis and first-principle simulation,the results show that the substitution of Y element reduces the migration energy barrier of hydrogen and the structural stability of the system,which is conducive to hydrogen evolution.The alloy has superior durability compared to the original alloy,and the capacity retention rate was 96.79%after 100 hydrogen absorption/desorption cycles.展开更多
基金Project supported by the National Key R&D Program of China(2022YFB3807000)Innovation Funds of CRIMAT Engineering Institute Co.,Ltd.Campus France under Cai Yuanpei project(44027 WH)。
文摘AB_(2)-type(A=rare earth,B=transition metal)intermetallic compounds with C15 structure can easily absorb large amount of hydrogen,showing their potential use as hydrogen storage materials.The crucial problem hindering their application is hydrogen induced amorphization(HIA),which leads to the irreversible hydrogen sorption process.The stability of the AB_2 Laves phase compounds,the structural properties,the hydrogenation properties and the controlling factors of HIA are discussed in this review.Comparing with other factors,the atomic radii ratio r_A/r_B is the most important one influencing the HIA.Multi-element substitution is an efficient way to suppress or limit HIA and may enable AB_2 compounds to be suitable for hydrogen storage.
文摘Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2-type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS), and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.
文摘The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy. An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model. The results show that the predicted values are in good agreement with the experimental values. The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.
基金supported by the Major Science and Technology Project of Inner Mongolia(No.2021ZD0029)the National Natural Science Foundation of China(No.52301295)+5 种基金Key R&D projects of Jilin Provincial Science and Technology Development Plan(No.20230201125GX)Special fund of Scientific and Technological Cooperation Program between Jilin Province and Chinese Academy of Sciences(No.2023SYHZ0031)the Youth Innovation Promotion Association CAS(No.2022225)Guangdong Provincial University Innovation Team Project(No.2023KCXTD038)the State Key Laboratory of Rare Earth Resources Utilization(No.110000RL86)Changchun Institute of Applied Chemistry.
文摘High density and safe storage of hydrogen are the preconditions for the large-scale application of hydrogen energy.Herein,the hydrogen storage properties of Ti_(0.6)Zr_(0.4)Cr_(0.6)Mn_(1.4) alloys are systematically studied by introducing Y element instead of Ti element through vacuum arc melting.After the partial substitution of Y,a second phase of rare earth oxide is added in addition to the main suction hydrogen phase,C14 Laves phase.Thanks to the unique properties of rare earth elements,the partial substitution of Y can not only improve the activation properties and plateau pressure of the alloys,but also increase the effective hydrogen storage capacity of the alloys.The comprehensive properties of hydrogen storage alloys are improved by multidimensional regulation of rare earth elements.Among them,Ti_(0.552)Y_(0.048)Zr_(0.4)Cr_(0.6)Mn_(1.4) has the best comprehensive performance.The alloy can absorb hydrogen without activation at room temperature and 5 MPa,with a maximum hydrogen storage capacity of 1.98 wt.%.At the same time,it reduces the stability of the hydride and the enthalpy change value,making it easier to release hydrogen.Through theoretical analysis and first-principle simulation,the results show that the substitution of Y element reduces the migration energy barrier of hydrogen and the structural stability of the system,which is conducive to hydrogen evolution.The alloy has superior durability compared to the original alloy,and the capacity retention rate was 96.79%after 100 hydrogen absorption/desorption cycles.