期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
初级缺氧对硝化作用影响研究及分析 被引量:3
1
作者 赵旭涛 年跃刚 《环境科学研究》 EI CAS CSCD 北大核心 1998年第2期37-39,共3页
对缺氧生物吸附活性污泥法(ABSAS)生物脱氮系统中的硝化作用进行了分析和讨论,研究结果表明,有机物氧化优先于硝化作用,有机物对硝化作用的影响主要表现在异养氧化菌对硝化菌的竞争性抑制。但生物脱氮工艺中的初级缺氧反应对... 对缺氧生物吸附活性污泥法(ABSAS)生物脱氮系统中的硝化作用进行了分析和讨论,研究结果表明,有机物氧化优先于硝化作用,有机物对硝化作用的影响主要表现在异养氧化菌对硝化菌的竞争性抑制。但生物脱氮工艺中的初级缺氧反应对硝化作用有一定的促进作用,而且初级缺氧段中的反硝化作用愈强,则由缺氧段进入好氧段后,硝化作用进行的愈强,此特性可用于生物脱氮工艺的设计中,以提高硝化作用能力。 展开更多
关键词 硝化作用 缺氧 生物脱氮 废水处理 absas
在线阅读 下载PDF
基于ABSA方法的移动政务用户情感分析 被引量:6
2
作者 商容轩 张斌 米加宁 《图书与情报》 CSSCI 北大核心 2022年第3期63-72,共10页
移动政务APP作为各级政府服务群众的重要渠道,其在线评论的情感倾向会对用户的线上政务满意度产生重要影响。为了对当前移动政务APP用户评论进行细粒度情感分析,文章基于ABSA方法进行移动政务用户评论的情感倾向性测度:运用LDA主题模型... 移动政务APP作为各级政府服务群众的重要渠道,其在线评论的情感倾向会对用户的线上政务满意度产生重要影响。为了对当前移动政务APP用户评论进行细粒度情感分析,文章基于ABSA方法进行移动政务用户评论的情感倾向性测度:运用LDA主题模型进行隐式方面主题的抽取,并结合期望确认理论与信息系统成功模型构建移动政务用户需求模型;同时,选择BERT模型对实体词进行情感倾向概率判定,进而通过多维度间的情感倾向匹配实现方面级的情感强度测量。研究发现,通过该方法可以挖掘移动政务用户的需求重点与情感状态,当前用户对服务质量呈现积极的情感状态,而对系统质量与信息质量的情感评价则较为负面。 展开更多
关键词 移动政务 ABSA方法 用户情感 方面级 情感分析
在线阅读 下载PDF
Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models
3
作者 Zhaoliang Wu Yuewei Wu +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2024年第3期3391-3412,共22页
Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ... Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach. 展开更多
关键词 ABSA ASQP LLMs sentiment analysis Chinese comments
在线阅读 下载PDF
Syntax-Based Aspect Sentiment Quad Prediction by Dual Modules Neural Network for Chinese Comments
4
作者 Zhaoliang Wu Shanyu Tang +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2023年第5期2873-2888,共16页
Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accura... Aspect-Based Sentiment Analysis(ABSA)is one of the essential research in the field of Natural Language Processing(NLP),of which Aspect Sentiment Quad Prediction(ASQP)is a novel and complete subtask.ASQP aims to accurately recognize the sentiment quad in the target sentence,which includes the aspect term,the aspect category,the corresponding opinion term,and the sentiment polarity of opinion.Nevertheless,existing approaches lack knowledge of the sentence’s syntax,so despite recent innovations in ASQP,it is poor for complex cyber comment processing.Also,most research has focused on processing English text,and ASQP for Chinese text is almost non-existent.Chinese usage is more casual than English,and individual characters contain more information.We propose a novel syntactically enhanced neural network framework inspired by syntax knowledge enhancement strategies in other NLP studies.In this framework,part of speech(POS)and dependency trees are input to the model as auxiliary information to strengthen its cognition of Chinese text structure.Besides,we design a relation extraction module,which provides a bridge for the overall extraction of the framework.A comparison of the designed experiments reveals that our proposed strategy outperforms the previous studies on the key metric F1.Further experiments demonstrate that the auxiliary information added to the framework improves the final performance in different ways. 展开更多
关键词 ABSA ASQP sentiment analysis Chinese comments
在线阅读 下载PDF
End-to-end aspect category sentiment analysis based on type graph convolutional networks
5
作者 邵清 ZHANG Wenshuang WANG Shaojun 《High Technology Letters》 EI CAS 2023年第3期325-334,共10页
For the existing aspect category sentiment analysis research,most of the aspects are given for sentiment extraction,and this pipeline method is prone to error accumulation,and the use of graph convolutional neural net... For the existing aspect category sentiment analysis research,most of the aspects are given for sentiment extraction,and this pipeline method is prone to error accumulation,and the use of graph convolutional neural network for aspect category sentiment analysis does not fully utilize the dependency type information between words,so it cannot enhance feature extraction.This paper proposes an end-to-end aspect category sentiment analysis(ETESA)model based on type graph convolutional networks.The model uses the bidirectional encoder representation from transformers(BERT)pretraining model to obtain aspect categories and word vectors containing contextual dynamic semantic information,which can solve the problem of polysemy;when using graph convolutional network(GCN)for feature extraction,the fusion operation of word vectors and initialization tensor of dependency types can obtain the importance values of different dependency types and enhance the text feature representation;by transforming aspect category and sentiment pair extraction into multiple single-label classification problems,aspect category and sentiment can be extracted simultaneously in an end-to-end way and solve the problem of error accumulation.Experiments are tested on three public datasets,and the results show that the ETESA model can achieve higher Precision,Recall and F1 value,proving the effectiveness of the model. 展开更多
关键词 aspect-based sentiment analysis(ABSA) bidirectional encoder representation from transformers(BERT) type graph convolutional network(TGCN) aspect category and senti-ment pair extraction
在线阅读 下载PDF
面向方面级情感分析的外部知识增强图注意力网络
6
作者 马英硕 张春英 +3 位作者 杨光辉 王静 薛涛 刘璐 《计算机工程与应用》 2026年第2期201-210,共10页
方面级情感分析,作为一种细粒度的情感分析任务,旨在识别文本中特定方面的情感倾向。然而,传统的分析方法常受限于文本内部信息,忽视了外部知识及上下文与方面词间的关系。此外,图注意力网络模型在结合外部知识时往往会忽略情感方面的... 方面级情感分析,作为一种细粒度的情感分析任务,旨在识别文本中特定方面的情感倾向。然而,传统的分析方法常受限于文本内部信息,忽视了外部知识及上下文与方面词间的关系。此外,图注意力网络模型在结合外部知识时往往会忽略情感方面的知识表达。针对这些问题,提出一种基于外部知识增强图注意力网络的方面级情感分析模型(external knowledge enhanced graph attention network,EK-GAT)。具体来说,该网络利用外部情感词典为依赖树的每个单词分配情感分数,从而构建具有丰富情感表示的增强图。此外,为了进一步优化这些情感信息的使用,设计一种图注意力网络策略(SignGAT),这使得模型处理图数据时能够准确地捕捉节点间的情感表示。实验结果显示,在四个公开数据集上,EK-GAT模型的准确率比最优基线模型分别提高了1.08、2.40、0.81和2.50个百分点。 展开更多
关键词 方面级情感分析(ABSA) 外部知识增强 图注意力网络(GAT) 情感词典 依赖树
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部