Lattice parameter and corresponding total free energy have been computed for cubic SrMO3 perovskites (M = Ti, Zr, Mo, Rh, Ru) using the first principle approach within Density functional theory. The results have been ...Lattice parameter and corresponding total free energy have been computed for cubic SrMO3 perovskites (M = Ti, Zr, Mo, Rh, Ru) using the first principle approach within Density functional theory. The results have been calculated using local density approximation (LDA) method. It is found that the calculated lattice parameter for all transition metal oxides are in good agreement with the available experimental data. The total free energy corresponding to this lattice constant has been calculated along with different components of the total free energy. All these calculations have been carried out using ABINIT computer code.展开更多
The equilibrium crystal structure parameter and bulk modulus of the SrMoO3 perovskite has been calculated with ab-initio method based on density functional theory (DFT) using both local density approximation (LDA) and...The equilibrium crystal structure parameter and bulk modulus of the SrMoO3 perovskite has been calculated with ab-initio method based on density functional theory (DFT) using both local density approximation (LDA) and generalized gradient approximation (GGA). The corresponding total free energy along with its various components for SrMoO3 was obtained. The lattice parameter and bulk modulus calculated for SrMoO3 within LDA are 3.99 A and 143.025 GPa respectively whereas within GGA are 4.04 A and 146.14 GPa respectively, both agree well with the available experimental data. The total energy calculated within LDA and GGA is almost the same however lower results are obtained for GGA. All calculations have been carried out using ABINIT computer code.展开更多
文摘Lattice parameter and corresponding total free energy have been computed for cubic SrMO3 perovskites (M = Ti, Zr, Mo, Rh, Ru) using the first principle approach within Density functional theory. The results have been calculated using local density approximation (LDA) method. It is found that the calculated lattice parameter for all transition metal oxides are in good agreement with the available experimental data. The total free energy corresponding to this lattice constant has been calculated along with different components of the total free energy. All these calculations have been carried out using ABINIT computer code.
文摘The equilibrium crystal structure parameter and bulk modulus of the SrMoO3 perovskite has been calculated with ab-initio method based on density functional theory (DFT) using both local density approximation (LDA) and generalized gradient approximation (GGA). The corresponding total free energy along with its various components for SrMoO3 was obtained. The lattice parameter and bulk modulus calculated for SrMoO3 within LDA are 3.99 A and 143.025 GPa respectively whereas within GGA are 4.04 A and 146.14 GPa respectively, both agree well with the available experimental data. The total energy calculated within LDA and GGA is almost the same however lower results are obtained for GGA. All calculations have been carried out using ABINIT computer code.