[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.W...[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.展开更多
Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive ...Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes. A process-oriented biogeochemical model, Forest-DNDC, was applied to simulate the effects of climatic factors, temperature and precipitation changes on carbon characteristics, and greenhouse gases (GHGs) emissions in A. fabric forest. Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy. The model simulated carbon fluxes, soil carbon dynamics, soil CO2, N2O, and NO emissions with the changes of temperature and precipitation conditions. The results showed that with variation in the baseline temperature from -2℃ to +2℃, the gross primary production (GPP) and soil organic carbon (SOC) increased, and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate. With increasing baseline precipitation the GPP and NPP increased slightly, and the NEP and SOC showed decreasing trend. Soil CO2 emissions increased with the increase of temperature, and CO2 emissions changed little with increased baseline precipitation. With increased temperature and decreased baseline temperature, the total annual soil N2O emissions increased. With the variation of baseline temperature from -2℃ to +2℃, the total annual soil NO emissions increased. The total annual N2O and NO emissions showed increasing trends with the increase of precipitation. The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes, soil carbon dynamics, and soil GHGs emissions. The precipitation was not a principal factor affecting carbon fluxes, soil carbon dynamics, and soil CO2 emissions, but changes in precipitation could exert strong effect on soil N2O and NO emissions.展开更多
Swat district is a biodiversity hub of Pakistan. The plant species, especially trees, in the Swat District are exposed to extinction threat from global climate change. Maximum entropy (MaxEnt) modelling of species d...Swat district is a biodiversity hub of Pakistan. The plant species, especially trees, in the Swat District are exposed to extinction threat from global climate change. Maximum entropy (MaxEnt) modelling of species distribution, using HADCM3 A2a global climate change scenario, pre-dicted a considerable change in the future distribution ofAbies pindrow (Royle ex D.Don) Royle. AUC (area under the curve)values of 0.972 and 0.983 were significant for the present and future distribution models of the species, respectively. It is clear that bioclimatic variables such as the mean temperature of the warmest quarter (bio_10) and the annual temperature range (bio_7) contribute significantly to the model and thus affect the predicted distribution and density of the species. The future model predicts that by the year 2080 population density will have decreased significantly. The highest density of the species is recorded in the eastern and western borders of the Valley in the areas of Sulatanr and Mankial. The changes in density and distribution of the species can have considerable impact, not only on the tree species itself, but on the associated subflora as well.展开更多
A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 ...A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 to 2010, was developed from 38 tree-ring samples. No higher growth in recent decades was observed in tree-ring width in this area. The mean temperature of the current year in February and in the combined winter months of December, January, and February showed significant positive correlation with tree-ring width, although no significant correlation was found between tree-ring width and the precipitation pattern of the region. This tree-ring climate response result is different from that in other studies in Nepal, which could be attributed to location and elevation.展开更多
The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering w...The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth.展开更多
Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes...Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.展开更多
I studied the influence of various combinations of auxin and cytokinin concentrations, and the increased content of zinc and enzymatic casein hydrolizate in SH medium on initiation and proliferation of embryogenic cal...I studied the influence of various combinations of auxin and cytokinin concentrations, and the increased content of zinc and enzymatic casein hydrolizate in SH medium on initiation and proliferation of embryogenic callus of Abies nordmanniana (Steven) Spach. Addition- ally, the effect of ABA, PEG-4000 and different wave- lengths on the maturation of somatic embryos was tested. The use of optimum composition of modified SH medium with BA, KIN and 2.4-D while simultaneously ensuring appropriate external conditions resulted in 15.5 % embryogenesis. Finally, satisfactory results of microprop- agation of A. nordmanniana by somatic embryogenesis were obtained providing seven lines of embryogenic callus with high proliferation capacity. Those lines gave properly developed seedlings in white LED light with a wavelength of 400-700 nm, preceded by eight-week vernalization treatment of the callus. This paper may provide a protocol by which all stages of somatic embryogenesis of A. nord- manniana can be carded out, including the preceding 24-h seed disinfection with NaOCl and PVP, which resulted in 100 % frequency of uninfected zygotic embryos that were capable of starting embryogenesis.展开更多
One new and 16 known compounds were isolated from Abies sibirica. Their structures were assigned mainly on the basis of NMR and MS spectroscopic data. In bioassay for anti-proliferative activity against four human tum...One new and 16 known compounds were isolated from Abies sibirica. Their structures were assigned mainly on the basis of NMR and MS spectroscopic data. In bioassay for anti-proliferative activity against four human tumor cells, compound 7 exhibited selective anti-proliferative activity against COLO-205 tumor cell with an IC50 value of 0.9 μg/mL.展开更多
Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedling...Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedlings were selected, of which functional leaves in current-year sunny branches were chosen for the measurement of morphological, photosynthetic, and physiological and biochemical characteristics, and their variations were analyzed. Results showed that significant variations existed among the leaf functional traits of A. georgei var. smithii along the altitudinal gradient, as well as their physiological adaption indicators. Leaf area decreased, while the mass per area and thickness of leaf increased at an altitude above 4,100 m. The maxima of pigment, total nitrogen concentration, net photosynthesis rate during light-saturated, and when water use efficiency appeared at 4100 m altitude. In addition, A. georgei var. smithii seedlings regulated the activities of superoxide dismutase and ascorbate peroxidase to resist abiotic stress under 4100 m altitude. Meanwhile, malondialdehyde concentration and the dark respiration rate rapidly increased, which indicates that A. georgei var. smithii seedlingssuffered from heavy abiotic stress from 4100 m to 4390 m altitude. Basing on variations in leaf functional traits along the altitude gradient, we inferred that 4100 m altitude was the suitable region for A. georgei var. smithii growth in the Sygera Mountain. Moreover, the harsh environment was the main limiting factor for A. georgei var. smithii population expansion to high altitude.展开更多
Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters ...Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.展开更多
I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessa...I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessary is the response variable, and elevation, slope steepness, maximum snow depth, annual precipitation, geology, soil, site index, slope aspect, and vegetation type are explanatory variables. Among the explanatory variables, geology, soil, slope aspect, and vegetation type are categorical data. A Poisson distribution is assumed for the response variable, with a log-link function. Elevation, slope steepness, maximum snow depth, annual precipitation, site index, and vegetation type had a significant effect on weeding duration. Among the eight models with the smallest Akaike information criterion (AIC), I chose the model with no multicollinearity among the explanatory variables. The weeding-duration model includes site index, maximum snow depth, slope steepness (angle) and vegetation type as explanatory variables; elevation and annual precipitation were not included in the selected model because of multicollinearity with maximum snow depth. This model is useful for cost-benefit analyses of afforestation or reforestation with Abies sachalinensis.展开更多
Abies gracilis Kom.(Pinaceae)is one of the rarest and endangered conifers in the Russian flora,which must be cultivated ex situ to ensure its survival.Cuttings of A.gracilis do not take root without biostimulants.We u...Abies gracilis Kom.(Pinaceae)is one of the rarest and endangered conifers in the Russian flora,which must be cultivated ex situ to ensure its survival.Cuttings of A.gracilis do not take root without biostimulants.We used a selection of biostimulants,concentrations,and conditions of their use to significantly increase Abies gracilis rooting,and to accelerate the production of planting material,and to reduce rooting time to one season.We tested 4 rooting systems:IBA,IBA with glucose and glycine,and original biostimulants(S-try and S-5).The original S-5 biostimulating system had the most balanced ratio of components.The number of rooted samples increased 2.7 times and the length of roots increased 1.8 time when using S-5 as compared to IBA.S-try and S-5-original biostimulant systems were synthesized and collected in 2011 and 2014,respectively,and were tested in St.Petersburg Forest Technical University.展开更多
The continuous chemical investigation on the ethyl acetate (EtOAc) soluble fraction of the MeOH extract afforded two new lanostane triterpenoid derivatives including one with a rearranged lanostane skeleton. They we...The continuous chemical investigation on the ethyl acetate (EtOAc) soluble fraction of the MeOH extract afforded two new lanostane triterpenoid derivatives including one with a rearranged lanostane skeleton. They were identified as 3,4-seco-8-(14→13R)abeo-17,13-friedo-9β-lanosta-4(28), 7,14(30),24-tetraen-26,23-olide-23-hydroxy-3-oic acid (1) and 7,14-mariesa- dien-3oL-hydroxy-25-methoxy-26-oic acid (2). Structural determination of these compounds were carried out by the spectral studies especially by the two digital (2D)-NMR and high-resolution MS experiences.展开更多
Abies georgei var.smithii is an important plant species in Southeast Tibet,China.It has high ecological value in terms of biodiversity protection,as well as soil and water conservation.We analyzed the spatial pattern ...Abies georgei var.smithii is an important plant species in Southeast Tibet,China.It has high ecological value in terms of biodiversity protection,as well as soil and water conservation.We analyzed the spatial pattern and associations of A.georgei var.smithii populations at different growth stages by using Ripley's L function for point pattern analysis.The diameter structure was a nearly reverse 'J' shape.The amount of saplings and medium-sized trees accounts for a large part of the entire population,suggesting a high regeneration rate and an expanding population.In the transition from saplings to medium trees or to large trees,saplings show a significant aggregation distribution at small scales,while medium trees and large trees show a random distribution.There are significant inverse associations between saplings and medium trees and large trees at small scales,while there are no obvious associations between medium trees and large trees.The natural regeneration was affected by interspecific competition,and it was also affected by intraspecific competition.The joint effects of biological characteristics and environmental factors contribute to the spatial distribution pattern and associations of this A.georgei var.sm ithii population.展开更多
Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of ...Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca 2+ , HCO - 3 and SO 2- 4 were the dominant anions in the streamwater in this region. A significant difference of Ca 2+ , HCO - 3 and SO 2- 4 concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca 2+ , HCO - 3 and SO 2- 4 showed significantly negative correlations with the daily precipitation and the stream discharge. \;Concentrations of Cl -, Na +, K +, and Mg 2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg 2+ , Na +, K +, and Cl - concentrations. This indicated that they might be come from rainfall inputs(external source). The highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern were suggested.展开更多
We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ...We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ombrogenous mire.The effect of stemflow on the peat pore water chemistry was clear at the stem base in the peat forest in the mire,and the peat pore water around the stem base of a tree had its own chemical properties specific to each species.P.glehnii showed the highest concentration of salts both in stemflow and peat-pore water,whereas A.japonica showed the lowest concentrations;however,the gradient of the chemical environment from the stem base to outside of the canopy is formed.The peat pore water chemistry under the canopy was mainly controlled by the chemical processes diluted by the abundant peat pore water;the stemflow movement in the high water content of the peat was more slowly because of the flat topography(〈 1o).This would be due to the fact that the chemicals in stemflow would be diluted by the abundant peat pore water.The spatial heterogeneity of chemical environment between microsites within forested peatland would be also contributed indirectly through the control of microorganism activity,and nutrient regeneration mediated the surface water and the stemflow of the dominant canopy trees.展开更多
Nicotinamide treatment of plants and plant cell cultures has been shown to promote defense and decrease levels of DNA methylation.In the present study,we used RNA-seq technology to study overall changes in gene expres...Nicotinamide treatment of plants and plant cell cultures has been shown to promote defense and decrease levels of DNA methylation.In the present study,we used RNA-seq technology to study overall changes in gene expression induced in roots of 3-month-old spruce(Picea abies)seedlings grown from nicotinamide-treated seeds to examine the molecular mechanisms underlying the defense promotion.Approximately 350 genes were identified as differentially expressed in roots after the seed treatment.Stress response genes,including transcription factors MYB77 and LHY and two chitinase enzymes,were generally upregulated,whereas genes thought to be involved in epigenetic regulation such as DDM1,known to promote DNA methylation,were present at high frequency among the downregulated genes.Across all samples,the expression of downregulated epigenetic-related genes was highly correlated with the nicotinamide treatment,indicating a common regulation.Our results support an earlier hypothesis regarding a potential role of nicotinamide as a defense-signal mediator.展开更多
Different types of plantations were observed in Baishilazi National Nature Reserve, Liaoning Province, for 34 a. The environmental quality ofAbies holophylla plantations was analyzed under different cutting systems. A...Different types of plantations were observed in Baishilazi National Nature Reserve, Liaoning Province, for 34 a. The environmental quality ofAbies holophylla plantations was analyzed under different cutting systems. Analysis factors included soil erosion rate, humification degree of litters, and water hold capacity. The surface soil loss of clear cutting area was 19000t·km?2·a?1 more than that of selective cutting area. The content of soil organic matter in board-leaved—Abies holophylla forest was 4.62% more than that in pure stand, and the water hold capacity of the mixed forest was 1.43 time of that of pure stand. The mixed forest of board-leaved—Abies holophylla by selective cutting can upgrade the ecological environment quality.展开更多
Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet enviro...Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia.The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change.In this study,the growing-seasonal variations of Rs,soil temperature,soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient(2000,2100,2200 and 2300 m)over two years on Wutai Mountain in North China.As the main results showed,soil respiration keeps the same change trend as soil temperature and reached peaks in July at 2000 m in 2019 and 2020.During 26th July to 25th October in 2019 and 27th May to 23rd October in 2020,on the whole,the soil temperature independently explained 76.2%of Rs variations while the soil water content independently explained 26.8%.Soil temperature and soil water content jointly explained 81.8%of Rs variations.Soil properties explained 61.8%and 69.6%of Rs variation in 2019 and 2020,respectively.Soil organic carbon content and soil enzyme activity had the signifi-cant(P<0.01)negative and positive relationships,respectively,with Rs variation.With altitudes evaluated from 2000 to 2300 m,soil respiration temperature sensitivity(Q10)and the soil organic carbon content increased by 12.4%and 10.4%,respectively,while invertase activity,cellulase activity and urease activity dropped by 41.2%,29.45%and 38.19%,respectively.The results demonstrate that(1)soil temperature is the major factor affecting Rs variations in Abies nephrolepis forests;(2)weakened microbial carbon metabolism in high-altitude areas results in the accumulation of soil organic carbon;(3)with a higher Q10,forest ecosystems in high-altitude areas might be more easily affected by climate change;(4)climate warming might accelerate the consumption of soil organic carbon sink in forest ecosystems,especially in high-altitude areas.展开更多
基金Supported by Science and Technology Plan of Zhejiang Province(2005C32036)National Natural Science Foundation of China(30700644)~~
文摘[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.
文摘Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes. A process-oriented biogeochemical model, Forest-DNDC, was applied to simulate the effects of climatic factors, temperature and precipitation changes on carbon characteristics, and greenhouse gases (GHGs) emissions in A. fabric forest. Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy. The model simulated carbon fluxes, soil carbon dynamics, soil CO2, N2O, and NO emissions with the changes of temperature and precipitation conditions. The results showed that with variation in the baseline temperature from -2℃ to +2℃, the gross primary production (GPP) and soil organic carbon (SOC) increased, and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate. With increasing baseline precipitation the GPP and NPP increased slightly, and the NEP and SOC showed decreasing trend. Soil CO2 emissions increased with the increase of temperature, and CO2 emissions changed little with increased baseline precipitation. With increased temperature and decreased baseline temperature, the total annual soil N2O emissions increased. With the variation of baseline temperature from -2℃ to +2℃, the total annual soil NO emissions increased. The total annual N2O and NO emissions showed increasing trends with the increase of precipitation. The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes, soil carbon dynamics, and soil GHGs emissions. The precipitation was not a principal factor affecting carbon fluxes, soil carbon dynamics, and soil CO2 emissions, but changes in precipitation could exert strong effect on soil N2O and NO emissions.
文摘Swat district is a biodiversity hub of Pakistan. The plant species, especially trees, in the Swat District are exposed to extinction threat from global climate change. Maximum entropy (MaxEnt) modelling of species distribution, using HADCM3 A2a global climate change scenario, pre-dicted a considerable change in the future distribution ofAbies pindrow (Royle ex D.Don) Royle. AUC (area under the curve)values of 0.972 and 0.983 were significant for the present and future distribution models of the species, respectively. It is clear that bioclimatic variables such as the mean temperature of the warmest quarter (bio_10) and the annual temperature range (bio_7) contribute significantly to the model and thus affect the predicted distribution and density of the species. The future model predicts that by the year 2080 population density will have decreased significantly. The highest density of the species is recorded in the eastern and western borders of the Valley in the areas of Sulatanr and Mankial. The changes in density and distribution of the species can have considerable impact, not only on the tree species itself, but on the associated subflora as well.
文摘A dendroclimatic study was conducted in the treeline ecotone of Barun Valley, eastern Nepal, to determine the tree-ring climate response and ring width trend of Abies spectabilis. A 160-year-old chronology, from 1850 to 2010, was developed from 38 tree-ring samples. No higher growth in recent decades was observed in tree-ring width in this area. The mean temperature of the current year in February and in the combined winter months of December, January, and February showed significant positive correlation with tree-ring width, although no significant correlation was found between tree-ring width and the precipitation pattern of the region. This tree-ring climate response result is different from that in other studies in Nepal, which could be attributed to location and elevation.
基金We thank the Kathmandu Center for Research and Education,CAS-TU,for help during the fieldwork。
文摘The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth.
基金supported by the National Natural Science Foundation of China (Grant No. 41371009)the Fundamental Research Fund for the Central Universities of China (Grant No. lzujbky2013-127)
文摘Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.
基金supported by research topic DS No.3414 of the Ministry of Science and Higher Education and funded from international corporation Vitroflora
文摘I studied the influence of various combinations of auxin and cytokinin concentrations, and the increased content of zinc and enzymatic casein hydrolizate in SH medium on initiation and proliferation of embryogenic callus of Abies nordmanniana (Steven) Spach. Addition- ally, the effect of ABA, PEG-4000 and different wave- lengths on the maturation of somatic embryos was tested. The use of optimum composition of modified SH medium with BA, KIN and 2.4-D while simultaneously ensuring appropriate external conditions resulted in 15.5 % embryogenesis. Finally, satisfactory results of microprop- agation of A. nordmanniana by somatic embryogenesis were obtained providing seven lines of embryogenic callus with high proliferation capacity. Those lines gave properly developed seedlings in white LED light with a wavelength of 400-700 nm, preceded by eight-week vernalization treatment of the callus. This paper may provide a protocol by which all stages of somatic embryogenesis of A. nord- manniana can be carded out, including the preceding 24-h seed disinfection with NaOCl and PVP, which resulted in 100 % frequency of uninfected zygotic embryos that were capable of starting embryogenesis.
基金supported by program NCET FoundationNSFC(No.30725045)+4 种基金partially supported by Global Research Network for Medicinal Plants(GRNMP)King Saud University,Shanghai Leading Academic Discipline Project(No.B906),FP7- PEOPLE-IRSES-2008(TCMCANCER Project 230232)Key Laboratory of Drug Research for Special Environments,PLA,Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products(No.10DZ2251300)the Scientific Foundation of Shanghai China(No.09DZ1975700,09DZ1971500, 10DZ1971700)the Twelfth Five-Year National Science & Technology Support Program(No.2012BAI29B06)
文摘One new and 16 known compounds were isolated from Abies sibirica. Their structures were assigned mainly on the basis of NMR and MS spectroscopic data. In bioassay for anti-proliferative activity against four human tumor cells, compound 7 exhibited selective anti-proliferative activity against COLO-205 tumor cell with an IC50 value of 0.9 μg/mL.
基金supported by the Tibetan Natural Scientific Foundation of China(2015ZR13-28)the Doctoral Scientific Research Foundation(STSD-2)+2 种基金Tibetan Linzhi National Forest Ecological Research Station(2012-LYPTDW-016)Promotion Plan of Plateau Basic Ecological Academic Team Abilitysupported by CFERN&GENE Award funds on ecological paper
文摘Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedlings were selected, of which functional leaves in current-year sunny branches were chosen for the measurement of morphological, photosynthetic, and physiological and biochemical characteristics, and their variations were analyzed. Results showed that significant variations existed among the leaf functional traits of A. georgei var. smithii along the altitudinal gradient, as well as their physiological adaption indicators. Leaf area decreased, while the mass per area and thickness of leaf increased at an altitude above 4,100 m. The maxima of pigment, total nitrogen concentration, net photosynthesis rate during light-saturated, and when water use efficiency appeared at 4100 m altitude. In addition, A. georgei var. smithii seedlings regulated the activities of superoxide dismutase and ascorbate peroxidase to resist abiotic stress under 4100 m altitude. Meanwhile, malondialdehyde concentration and the dark respiration rate rapidly increased, which indicates that A. georgei var. smithii seedlingssuffered from heavy abiotic stress from 4100 m to 4390 m altitude. Basing on variations in leaf functional traits along the altitude gradient, we inferred that 4100 m altitude was the suitable region for A. georgei var. smithii growth in the Sygera Mountain. Moreover, the harsh environment was the main limiting factor for A. georgei var. smithii population expansion to high altitude.
基金supported by the Tibetan Natural Scientific Foundation of China (13-28)Tibetan Linzhi National Forest Ecological Research Station (2012-LYPT-DW-016)+1 种基金Promotion Plan of Plateau Basic Ecological Academic Team Abilitysupported by CFERN&GENE Award funds on ecological paper
文摘Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.
文摘I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessary is the response variable, and elevation, slope steepness, maximum snow depth, annual precipitation, geology, soil, site index, slope aspect, and vegetation type are explanatory variables. Among the explanatory variables, geology, soil, slope aspect, and vegetation type are categorical data. A Poisson distribution is assumed for the response variable, with a log-link function. Elevation, slope steepness, maximum snow depth, annual precipitation, site index, and vegetation type had a significant effect on weeding duration. Among the eight models with the smallest Akaike information criterion (AIC), I chose the model with no multicollinearity among the explanatory variables. The weeding-duration model includes site index, maximum snow depth, slope steepness (angle) and vegetation type as explanatory variables; elevation and annual precipitation were not included in the selected model because of multicollinearity with maximum snow depth. This model is useful for cost-benefit analyses of afforestation or reforestation with Abies sachalinensis.
基金This work was supported,in part,by the Department of Science and Innovation of the Yamalo-Nenets Autonomous District under the Government Contract No.01-15/4 dated 25.07.2012,by the Ministry of Education and Science of the Russian Federation under the Project No.2014/181-2220.
文摘Abies gracilis Kom.(Pinaceae)is one of the rarest and endangered conifers in the Russian flora,which must be cultivated ex situ to ensure its survival.Cuttings of A.gracilis do not take root without biostimulants.We used a selection of biostimulants,concentrations,and conditions of their use to significantly increase Abies gracilis rooting,and to accelerate the production of planting material,and to reduce rooting time to one season.We tested 4 rooting systems:IBA,IBA with glucose and glycine,and original biostimulants(S-try and S-5).The original S-5 biostimulating system had the most balanced ratio of components.The number of rooted samples increased 2.7 times and the length of roots increased 1.8 time when using S-5 as compared to IBA.S-try and S-5-original biostimulant systems were synthesized and collected in 2011 and 2014,respectively,and were tested in St.Petersburg Forest Technical University.
文摘The continuous chemical investigation on the ethyl acetate (EtOAc) soluble fraction of the MeOH extract afforded two new lanostane triterpenoid derivatives including one with a rearranged lanostane skeleton. They were identified as 3,4-seco-8-(14→13R)abeo-17,13-friedo-9β-lanosta-4(28), 7,14(30),24-tetraen-26,23-olide-23-hydroxy-3-oic acid (1) and 7,14-mariesa- dien-3oL-hydroxy-25-methoxy-26-oic acid (2). Structural determination of these compounds were carried out by the spectral studies especially by the two digital (2D)-NMR and high-resolution MS experiences.
基金funded by the National Key Technology Support Program (2013BAC04B01)
文摘Abies georgei var.smithii is an important plant species in Southeast Tibet,China.It has high ecological value in terms of biodiversity protection,as well as soil and water conservation.We analyzed the spatial pattern and associations of A.georgei var.smithii populations at different growth stages by using Ripley's L function for point pattern analysis.The diameter structure was a nearly reverse 'J' shape.The amount of saplings and medium-sized trees accounts for a large part of the entire population,suggesting a high regeneration rate and an expanding population.In the transition from saplings to medium trees or to large trees,saplings show a significant aggregation distribution at small scales,while medium trees and large trees show a random distribution.There are significant inverse associations between saplings and medium trees and large trees at small scales,while there are no obvious associations between medium trees and large trees.The natural regeneration was affected by interspecific competition,and it was also affected by intraspecific competition.The joint effects of biological characteristics and environmental factors contribute to the spatial distribution pattern and associations of this A.georgei var.sm ithii population.
文摘Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca 2+ , HCO - 3 and SO 2- 4 were the dominant anions in the streamwater in this region. A significant difference of Ca 2+ , HCO - 3 and SO 2- 4 concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca 2+ , HCO - 3 and SO 2- 4 showed significantly negative correlations with the daily precipitation and the stream discharge. \;Concentrations of Cl -, Na +, K +, and Mg 2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg 2+ , Na +, K +, and Cl - concentrations. This indicated that they might be come from rainfall inputs(external source). The highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern were suggested.
文摘We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ombrogenous mire.The effect of stemflow on the peat pore water chemistry was clear at the stem base in the peat forest in the mire,and the peat pore water around the stem base of a tree had its own chemical properties specific to each species.P.glehnii showed the highest concentration of salts both in stemflow and peat-pore water,whereas A.japonica showed the lowest concentrations;however,the gradient of the chemical environment from the stem base to outside of the canopy is formed.The peat pore water chemistry under the canopy was mainly controlled by the chemical processes diluted by the abundant peat pore water;the stemflow movement in the high water content of the peat was more slowly because of the flat topography(〈 1o).This would be due to the fact that the chemicals in stemflow would be diluted by the abundant peat pore water.The spatial heterogeneity of chemical environment between microsites within forested peatland would be also contributed indirectly through the control of microorganism activity,and nutrient regeneration mediated the surface water and the stemflow of the dominant canopy trees.
基金supported by AForsk(https://aforsk.com)[15-416]Stiftelsen Tornspiran(http://stiftelsentornspiran.se)+2 种基金Anna och Nils Hakanssons Stiftelse(http://www.annaochnilshakanssonsstiftelse.se)Helge Ax:son Johnsons stiftelse(http://haxsonj.se/www/)[770721-0204]Magnus Bergvalls Stiftelse(http://www.magnbergvallsstiftelse.nu)[2014-00501]。
文摘Nicotinamide treatment of plants and plant cell cultures has been shown to promote defense and decrease levels of DNA methylation.In the present study,we used RNA-seq technology to study overall changes in gene expression induced in roots of 3-month-old spruce(Picea abies)seedlings grown from nicotinamide-treated seeds to examine the molecular mechanisms underlying the defense promotion.Approximately 350 genes were identified as differentially expressed in roots after the seed treatment.Stress response genes,including transcription factors MYB77 and LHY and two chitinase enzymes,were generally upregulated,whereas genes thought to be involved in epigenetic regulation such as DDM1,known to promote DNA methylation,were present at high frequency among the downregulated genes.Across all samples,the expression of downregulated epigenetic-related genes was highly correlated with the nicotinamide treatment,indicating a common regulation.Our results support an earlier hypothesis regarding a potential role of nicotinamide as a defense-signal mediator.
文摘Different types of plantations were observed in Baishilazi National Nature Reserve, Liaoning Province, for 34 a. The environmental quality ofAbies holophylla plantations was analyzed under different cutting systems. Analysis factors included soil erosion rate, humification degree of litters, and water hold capacity. The surface soil loss of clear cutting area was 19000t·km?2·a?1 more than that of selective cutting area. The content of soil organic matter in board-leaved—Abies holophylla forest was 4.62% more than that in pure stand, and the water hold capacity of the mixed forest was 1.43 time of that of pure stand. The mixed forest of board-leaved—Abies holophylla by selective cutting can upgrade the ecological environment quality.
基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(2019L0826).
文摘Soil respiration(Rs)plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity.Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia.The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change.In this study,the growing-seasonal variations of Rs,soil temperature,soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient(2000,2100,2200 and 2300 m)over two years on Wutai Mountain in North China.As the main results showed,soil respiration keeps the same change trend as soil temperature and reached peaks in July at 2000 m in 2019 and 2020.During 26th July to 25th October in 2019 and 27th May to 23rd October in 2020,on the whole,the soil temperature independently explained 76.2%of Rs variations while the soil water content independently explained 26.8%.Soil temperature and soil water content jointly explained 81.8%of Rs variations.Soil properties explained 61.8%and 69.6%of Rs variation in 2019 and 2020,respectively.Soil organic carbon content and soil enzyme activity had the signifi-cant(P<0.01)negative and positive relationships,respectively,with Rs variation.With altitudes evaluated from 2000 to 2300 m,soil respiration temperature sensitivity(Q10)and the soil organic carbon content increased by 12.4%and 10.4%,respectively,while invertase activity,cellulase activity and urease activity dropped by 41.2%,29.45%and 38.19%,respectively.The results demonstrate that(1)soil temperature is the major factor affecting Rs variations in Abies nephrolepis forests;(2)weakened microbial carbon metabolism in high-altitude areas results in the accumulation of soil organic carbon;(3)with a higher Q10,forest ecosystems in high-altitude areas might be more easily affected by climate change;(4)climate warming might accelerate the consumption of soil organic carbon sink in forest ecosystems,especially in high-altitude areas.