The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Xizang,indicating rotation of eastern Xizang material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assum...Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assumption may induce high-frequency signals in the Bouguer gravity anomaly.This study introduces a Bayesian method for computing Bouguer gravity anomaly.It incorporates a smoothness prior for the Bouguer gravity anomaly and estimates near-surface density parameters to minimize the Akaike's Bayesian Information Criterion(ABIC)value.The effectiveness of this method is validated through theoretical model tests and calculations on two observed gravity profiles in Yunnan.The results indicate that the Bouguer gravity anomaly profiles estimated using the Bayesian approach need no extra filtering,exhibit correlations with the crustal structure along the profiles,and effectively reveal subsurface crustal density variations.Moreover,the obtained density variations offer insights into the near-surface rock density in different geological periods.Specifically,Cenozoic formations have a density of roughly 2.65–2.90 g·cm^(-3),Mesozoic formations 2.61-2.91 g·cm^(-3),and Paleozoic formations 2.61–2.92 g·cm^(-3).Magmatic rock regions generally show higher density values.Additionally,these estimated densities show a positive correlation with the global VS30 seismic velocity estimates,suggesting a new geophysical approach for seismic site classification.The findings of this study are significantly valuable for near-surface density estimation and Bouguer gravity anomaly calculations.展开更多
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Xizang,indicating rotation of eastern Xizang material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
基金supported by the National Key Research and Development Program of China(2023YFE0101800)the National Natural Science Foundation of China(Young Scientists Fund,42450233,General Program,42474120)+3 种基金the Basic Scientific Research Fund Special Project of the Institute of Geophysics,China Earthquake Administration(DQJB24B20)the Natural Science Foundation of Beijing(Grant No.1242033)the Natural Science Foundation of Tianjin(25JCQNJC00540)the National Science and Technology Major Project for Deep Earth Probe and Mineral Resources Exploration(2024ZD1002700).
文摘Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assumption may induce high-frequency signals in the Bouguer gravity anomaly.This study introduces a Bayesian method for computing Bouguer gravity anomaly.It incorporates a smoothness prior for the Bouguer gravity anomaly and estimates near-surface density parameters to minimize the Akaike's Bayesian Information Criterion(ABIC)value.The effectiveness of this method is validated through theoretical model tests and calculations on two observed gravity profiles in Yunnan.The results indicate that the Bouguer gravity anomaly profiles estimated using the Bayesian approach need no extra filtering,exhibit correlations with the crustal structure along the profiles,and effectively reveal subsurface crustal density variations.Moreover,the obtained density variations offer insights into the near-surface rock density in different geological periods.Specifically,Cenozoic formations have a density of roughly 2.65–2.90 g·cm^(-3),Mesozoic formations 2.61-2.91 g·cm^(-3),and Paleozoic formations 2.61–2.92 g·cm^(-3).Magmatic rock regions generally show higher density values.Additionally,these estimated densities show a positive correlation with the global VS30 seismic velocity estimates,suggesting a new geophysical approach for seismic site classification.The findings of this study are significantly valuable for near-surface density estimation and Bouguer gravity anomaly calculations.