为研究钙依赖蛋白激酶CPK11参与ABA信号通路的方式,本文利用体外酵母双杂实验(Y2H)以及体内双分子荧光互补实验(BiFC)分析CPK11与ABA响应元件结合因子(ABA-responsive element binding factors, ABFs)ABF4之间的关系.酵母双杂交实验表明...为研究钙依赖蛋白激酶CPK11参与ABA信号通路的方式,本文利用体外酵母双杂实验(Y2H)以及体内双分子荧光互补实验(BiFC)分析CPK11与ABA响应元件结合因子(ABA-responsive element binding factors, ABFs)ABF4之间的关系.酵母双杂交实验表明CPK11与ABF4存在体外相互作用,双分子荧光互补实验表明CPK11与ABF4存在体内相互作用.以上实验共同证明CPK11与ABF4存在直接相互作用.作为CPK11的同源蛋白CPK4与转录因子ABF4在植物体内也存在相互作用.以上实验表明CPK11及其同源蛋白CPK4可能通过与转录因子ABF4相互作用从而参与钙离子介导的ABA信号通路.展开更多
The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-re...The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-responsive element (ABRE)-binding factors (ABFs) in the drought-escape response is poorly understood. Here, we show that Arabidopsis thaliana ABF3 and ABF4 regulate flowering in response to drought through transcriptional regulation of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The abf3 abf4 mutant displayed ABA-insensitive late flowering under long-day conditions. Ectopic expression of ABF3 or ABF4 in the vasculature, but not in the shoot apex, induced early flowering, whereas expression of ABF3 fused with the SRDX transcript!onal repressor domain delayed flowering. We identified SOC1 as a direct downstream target of ABF3/4, and found that SOC1 mRNA levels were lower in abf3 abf4 than in wild-type plants. Moreover, induction of SOC1 by ABA was hampered in abf3 abf4 mutants. ABF3 and ABF4 were enriched at the -1028- to -657-bp region of the SOC1 promoter, which does not contain canonical ABF-ABRE-binding motifs but has the NF-Y binding element. We found that ABF3 and ABF4 interact with nuclear factor Y subunit C (NF-YC) 3/4/9 in vitro and in planta, and induction of SOC1 by ABA was hampered in nf-yc3 yc4 yc9 mutants. Interestingly, the abf3 abf4, nf-yc3 yc4 yc9, and sod mutants displayed a reduced drought-escape response. Taken together, these results suggest that ABF3 and ABF4 act with NF-YCs to promote flowering by inducing SOC1 transcription under drought conditions . This mechanism might contribute to adaptation by enabling plants to complete their life cycles under drought stress.展开更多
文摘为研究钙依赖蛋白激酶CPK11参与ABA信号通路的方式,本文利用体外酵母双杂实验(Y2H)以及体内双分子荧光互补实验(BiFC)分析CPK11与ABA响应元件结合因子(ABA-responsive element binding factors, ABFs)ABF4之间的关系.酵母双杂交实验表明CPK11与ABF4存在体外相互作用,双分子荧光互补实验表明CPK11与ABF4存在体内相互作用.以上实验共同证明CPK11与ABF4存在直接相互作用.作为CPK11的同源蛋白CPK4与转录因子ABF4在植物体内也存在相互作用.以上实验表明CPK11及其同源蛋白CPK4可能通过与转录因子ABF4相互作用从而参与钙离子介导的ABA信号通路.
文摘The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-responsive element (ABRE)-binding factors (ABFs) in the drought-escape response is poorly understood. Here, we show that Arabidopsis thaliana ABF3 and ABF4 regulate flowering in response to drought through transcriptional regulation of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The abf3 abf4 mutant displayed ABA-insensitive late flowering under long-day conditions. Ectopic expression of ABF3 or ABF4 in the vasculature, but not in the shoot apex, induced early flowering, whereas expression of ABF3 fused with the SRDX transcript!onal repressor domain delayed flowering. We identified SOC1 as a direct downstream target of ABF3/4, and found that SOC1 mRNA levels were lower in abf3 abf4 than in wild-type plants. Moreover, induction of SOC1 by ABA was hampered in abf3 abf4 mutants. ABF3 and ABF4 were enriched at the -1028- to -657-bp region of the SOC1 promoter, which does not contain canonical ABF-ABRE-binding motifs but has the NF-Y binding element. We found that ABF3 and ABF4 interact with nuclear factor Y subunit C (NF-YC) 3/4/9 in vitro and in planta, and induction of SOC1 by ABA was hampered in nf-yc3 yc4 yc9 mutants. Interestingly, the abf3 abf4, nf-yc3 yc4 yc9, and sod mutants displayed a reduced drought-escape response. Taken together, these results suggest that ABF3 and ABF4 act with NF-YCs to promote flowering by inducing SOC1 transcription under drought conditions . This mechanism might contribute to adaptation by enabling plants to complete their life cycles under drought stress.