A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol)...A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate, PEG-b-PMEO2MA-b-P(MEO2MA-co-OEGMA)) was designed and synthesized by reversible addition- fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer endowed a thermal-induced two- step phase transition at 29 and 39 ℃corresponding to the thermosensitive properties of PMEOzMA and P(MEO2MA-co- OEGMA) segments, respectively. The two-step self-assembly of copolymer solutions was studied by UV transmittance measurement, dynamic light scattering (DLS), transmission electron microscopy (TEM) and so on. The triblock copolymers showed the distinct thermosensitive behavior with respect to transition temperatures, aggregate type and size, which was correlated to the degree of polymerization of thermosensitive blocks and the molar fraction of OEGMA in the P(MEO2MA- co-OEGMA) segments. In addition, micelles could further aggregate to form the hydrogel by the self-associate of PEG chains under the abduction of the concentration and temperature. The transition from sol to gel was investigated by a test tube inverting method and dynamic rheological measurement.展开更多
目的:构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH3389K毒力岛上的ABC转运蛋白gene0910敲除突变体,并初步分析其活性,为进一步研究猪链球菌假想毒力因子在致病中的作用提供实验基础。方法:以猪链球菌2型05ZYH33基因组为模板...目的:构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH3389K毒力岛上的ABC转运蛋白gene0910敲除突变体,并初步分析其活性,为进一步研究猪链球菌假想毒力因子在致病中的作用提供实验基础。方法:以猪链球菌2型05ZYH33基因组为模板,扩增gene0910两侧各约500bp左右的片段为上下游同源臂,以pSET1质粒为模板,扩增氯霉素抗性基因Cm为中间片段,采用重叠PCR方法搭建三个片段,并克隆到自杀载体pSET4S上,构建基因敲除的载体。电转化05ZYH33感受态细胞,经30℃双交换和40℃质粒丢失,最后点板法筛选出基因敲除突变体△0910。对突变株和野生株的生物学活性及小鼠的致病性进行了初步比较。结果:PCR分析和测序结果均显示gene0910完全被氯霉素抗性基因Cm所替代,基因敲除突变体构建成功。结论:突变株的生物学活性和对小鼠的致病性与野生株相比差异不显著。展开更多
基金financially supported by the National Natural Science Foundation of China(No.20973106)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_14R33)
文摘A double thermoresponsive ABC-type triblock copolymer (poly(ethyleneglycol)-block-poly (2-(2-methoxyethoxy)ethyl methacrylate)-block-poly(2-(2-methoxy ethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate, PEG-b-PMEO2MA-b-P(MEO2MA-co-OEGMA)) was designed and synthesized by reversible addition- fragmentation chain transfer polymerization (RAFT). The ABC-type triblock copolymer endowed a thermal-induced two- step phase transition at 29 and 39 ℃corresponding to the thermosensitive properties of PMEOzMA and P(MEO2MA-co- OEGMA) segments, respectively. The two-step self-assembly of copolymer solutions was studied by UV transmittance measurement, dynamic light scattering (DLS), transmission electron microscopy (TEM) and so on. The triblock copolymers showed the distinct thermosensitive behavior with respect to transition temperatures, aggregate type and size, which was correlated to the degree of polymerization of thermosensitive blocks and the molar fraction of OEGMA in the P(MEO2MA- co-OEGMA) segments. In addition, micelles could further aggregate to form the hydrogel by the self-associate of PEG chains under the abduction of the concentration and temperature. The transition from sol to gel was investigated by a test tube inverting method and dynamic rheological measurement.
文摘目的:构建猪链球菌2型(Streptococcus suis type 2)强毒株05ZYH3389K毒力岛上的ABC转运蛋白gene0910敲除突变体,并初步分析其活性,为进一步研究猪链球菌假想毒力因子在致病中的作用提供实验基础。方法:以猪链球菌2型05ZYH33基因组为模板,扩增gene0910两侧各约500bp左右的片段为上下游同源臂,以pSET1质粒为模板,扩增氯霉素抗性基因Cm为中间片段,采用重叠PCR方法搭建三个片段,并克隆到自杀载体pSET4S上,构建基因敲除的载体。电转化05ZYH33感受态细胞,经30℃双交换和40℃质粒丢失,最后点板法筛选出基因敲除突变体△0910。对突变株和野生株的生物学活性及小鼠的致病性进行了初步比较。结果:PCR分析和测序结果均显示gene0910完全被氯霉素抗性基因Cm所替代,基因敲除突变体构建成功。结论:突变株的生物学活性和对小鼠的致病性与野生株相比差异不显著。