期刊文献+
共找到908,508篇文章
< 1 2 250 >
每页显示 20 50 100
基于ABC-X模型的综合护理管理干预对老年HIV感染者负性情绪及睡眠质量的影响 被引量:1
1
作者 文跃莲 谭思连 +6 位作者 程树锦 金婕 陈蔚 石德贤 梁爱华 杨连招 刘振威 《内科》 2025年第1期30-35,共6页
目的 探究基于ABC-X模型的综合护理管理干预对老年人类免疫缺陷病毒(HIV)感染者负性情绪及睡眠质量的影响。方法 选取100例存在睡眠障碍的老年HIV感染者作为研究对象,按随机数字表法将其分为对照组和观察组,每组50例。对照组接受常规护... 目的 探究基于ABC-X模型的综合护理管理干预对老年人类免疫缺陷病毒(HIV)感染者负性情绪及睡眠质量的影响。方法 选取100例存在睡眠障碍的老年HIV感染者作为研究对象,按随机数字表法将其分为对照组和观察组,每组50例。对照组接受常规护理干预,观察组在对照组基础上接受基于ABC-X模型的综合护理管理干预。采用抑郁自评量表(SDS)、焦虑自评量表(SAS)和匹兹堡睡眠质量指数(PSQI),分别评估两组感染者的抑郁程度、焦虑程度和睡眠质量。比较两组干预前和干预3个月后的焦虑、抑郁程度及睡眠质量。结果 在研究过程中,观察组中途退出4例,对照组中途退出3例,最终93例老年HIV感染者(观察组46例,对照组47例)完成研究。干预前,两组SAS评分、SDS评分、PSQI总分及其各维度评分差异均无统计学意义(均P>0.05);干预3个月后,两组SAS评分、SDS评分、PSQI总分及其各维度评分均较干预前降低,且观察组低于对照组(均P<0.05)。结论 基于ABC-X模型的综合护理管理干预能有效地减轻老年HIV感染者的焦虑和抑郁程度,并改善其睡眠质量,具有一定的临床应用价值。 展开更多
关键词 心理护理 耳穴压豆 HIV感染者 睡眠质量 负性情绪 abc-x模型 五音疗法
暂未订购
ABC-X模型分析类风湿性关节炎患者疾病管理能力的影响因素
2
作者 李兴晶 孙博 +3 位作者 郭旖旎 周恩昌 谷海英 张丽娜 《安徽医学》 2025年第7期913-918,共6页
目的基于ABC-X模型为理论框架,了解类风湿性关节炎患者疾病管理能力的影响因素。方法本研究采用便利抽样法,选取2023年8月至2024年7月聊城市第二人民医院收治的298例类风湿性关节炎患者为研究对象。采用一般资料调查表、慢性病自我管理... 目的基于ABC-X模型为理论框架,了解类风湿性关节炎患者疾病管理能力的影响因素。方法本研究采用便利抽样法,选取2023年8月至2024年7月聊城市第二人民医院收治的298例类风湿性关节炎患者为研究对象。采用一般资料调查表、慢性病自我管理行为量表(CDSMS)、家庭关怀度指数问卷(APGAR)、领悟社会支持量表(PSSS)、疾病认知问卷对患者进行调查。分析不同类风湿性关节炎患者疾病管理能力得分情况,Pearson相关分析类风湿性关节炎患者CDSMS得分与APGAR、疾病认知、PSSS的相关性,采用多重线性回归分析基于ABC-X模型的类风湿性关节炎患者疾病管理的影响因素。结果类风湿性关节炎患者CDSMS得分为(29.06±8.64)分,APGAR得分为(7.81±1.65)分,疾病认知得分为(47.13±11.81)分,PSSS得分为(54.78±11.96)分。不同医疗费用支付方式、文化程度、人均收入、是否共病、病程、是否规范使用抗风湿性药物、是否达标治疗的类风湿性关节炎患者CDSMS得分比较,差异具有统计学意义(P<0.05)。多重线性回归分析显示,自费、存在共病及疾病认知能力差是类风湿性关节炎患者CDSMS的危险因素(P<0.05),高中以上文化程度、高家庭人均月收入、病程6年以上、规范使用抗风湿性药物、达标治疗、高APGAR和PSSS评分是其保护因素(P<0.05)。ABC-X模型结果显示,医疗费用支付方式、共病、疾病认知可能是通过影响压力感知进而影响患者的疾病管理能力,而文化程度、家庭人均月收入、病程、规范使用抗风湿性药物、达标治疗、APGAR、PSSS是通过调动支持性资源来影响患者的疾病管理能力。。结论类风湿性关节炎患者CDSMS得分偏下;建议在临床工作中基于ABC-X模型综合个人、家庭、社会等多层面制定干预方案,以期提高疾病管理能力,改善这类患者的生活质量。 展开更多
关键词 类风湿性关节炎 abc-x模型 疾病管理 影响因素
暂未订购
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
3
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
4
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
5
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
6
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:4
7
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
ABC-X情绪管理结合术后一导两用护理在腹腔镜下消化道穿孔修补术患者中的应用 被引量:1
8
作者 符春兰 《医学理论与实践》 2025年第4期666-669,共4页
目的:观察ABC-X情绪管理结合术后一导两用护理在腹腔镜下消化道穿孔修补术患者中的应用效果。方法:选择2021年1月—2023年12月于我院行腹腔镜下消化道穿孔修补术治疗的消化道穿孔患者76例为观察样本,以随机数字表法分为试验组和对照组,... 目的:观察ABC-X情绪管理结合术后一导两用护理在腹腔镜下消化道穿孔修补术患者中的应用效果。方法:选择2021年1月—2023年12月于我院行腹腔镜下消化道穿孔修补术治疗的消化道穿孔患者76例为观察样本,以随机数字表法分为试验组和对照组,各38例。对照组遵照腹腔镜下消化道穿孔修补术常规护理模式施护,试验组于此基础之上加用ABC-X情绪管理结合术后一导两用护理干预,对两组干预后的各观察指标进行比较。结果:护理后,试验组CPSS评分低于对照组,医学应对评分、康复指标优于对照组,术后并发症总发生率低于对照组(P<0.05)。结论:采用ABC-X情绪管理结合术后一导两用护理对腹腔镜下消化道穿孔修补术患者实施干预,利于患者心理压力的减低、医学应对行为的优化、并发症的防控与康复的加速。 展开更多
关键词 abc-x 情绪管理 一导两用护理 腹腔镜下消化道穿孔修补术
暂未订购
基于ABC-X模型的持续护理对高血压老年患者健康行为及血压控制的影响
9
作者 刘凤玲 黄小靓 +3 位作者 李敏 姚湘萍 王萍 邓优 《中国医学创新》 2025年第32期67-71,共5页
目的:探究基于ABC-X模型的持续护理对高血压老年患者健康行为及血压控制的影响。方法:将2024年9月—2025年5月于萍乡市第三人民医院治疗的80例高血压老年患者按照随机数字表法分为观察组(n=40,常规护理+基于ABC-X模型的持续护理)和对照... 目的:探究基于ABC-X模型的持续护理对高血压老年患者健康行为及血压控制的影响。方法:将2024年9月—2025年5月于萍乡市第三人民医院治疗的80例高血压老年患者按照随机数字表法分为观察组(n=40,常规护理+基于ABC-X模型的持续护理)和对照组(n=40,常规护理),两组均护理至出院。评估两组血压水平、心理状态、健康行为方式、生活质量、护理满意度。结果:护理后,观察组血压水平、心理状态、健康促进生活方式量表(HPLP-Ⅱ)及SF-36各维度评分优于对照组(P<0.05);护理后相较对照组(75.00%),观察组患者护理总满意度高(92.50%)(P<0.05)。结论:基于ABC-X模型的持续护理能够有效降低高血压老年患者的血压水平,改善心理状态、健康行为方式及生活质量,提高护理满意度。 展开更多
关键词 abc-x模型 持续护理 高血压 老年患者 健康行为 生活质量
暂未订购
基于ABC-X模型的干预管理对面颈部烧伤瘢痕患者创伤后成长的影响
10
作者 徐静 安宁 《中国美容医学》 2025年第7期66-70,共5页
目的:观察面颈部烧伤瘢痕患者接受基于ABC-X模型的干预管理对其创伤后成长及其他方面的影响。方法:选取2023年1月-2023年12月就诊于笔者科室的102例面颈部烧伤瘢痕患者为研究对象,采用随机数字表法分为观察组(n=51)和对照组(n=51)。对... 目的:观察面颈部烧伤瘢痕患者接受基于ABC-X模型的干预管理对其创伤后成长及其他方面的影响。方法:选取2023年1月-2023年12月就诊于笔者科室的102例面颈部烧伤瘢痕患者为研究对象,采用随机数字表法分为观察组(n=51)和对照组(n=51)。对照组实施常规护理干预,观察组在对照组基础上实施基于ABC-X模型的干预管理。比较两组患者干预前后的应对方式[简易应对方式问卷(SCSQ)评分]、体象障碍评分、生活质量[生活质量综合判定问卷(GQOLI-74)评分]、负性情绪[焦虑自评量表(SAS)评分、抑郁自评量表(SDS)评分]、疾病不确定感[疾病不确定感量表(MUIS-A)评分]、睡眠质量[睡眠状况自评量表(SRSS)评分]、自护能力[自我护理能力测定量表(ESCA)评分]及创伤后成长[创伤后成长评定量表(PTGI)评分]。结果:观察组干预后消极应对评分比对照组更低、积极应对评分比对照组更高(均P<0.05),体象障碍评分比对照组更低(P<0.05),且在比较干预后生活质量各维度及ESCA时发现,观察组各评分均高过对照组(P<0.05),而比之对照组,观察组负性情绪、MUIS-A、SRSS评分均更低(P<0.05)。另观察组PTGI评分相较对照组也提升更为明显(P<0.05)。结论:基于ABC-X模型的干预管理对面颈部烧伤瘢痕患者创伤后成长有提升作用,能令患者以更积极的方式应对烧伤瘢痕,纠正其体象障碍,并提升其生活质量、睡眠质量、自护能力,对患者的负性情绪与疾病不确定感均有缓解效果。 展开更多
关键词 abc-x模型 面颈部 烧伤 瘢痕 创伤后成长 体象障碍
暂未订购
Evolution of Smart Parks and Development of Park Information Modeling(PIM):Concept and Design Application 被引量:2
11
作者 YANG Kaixian ZHEN Feng ZHANG Shanqi 《Chinese Geographical Science》 2025年第5期982-998,共17页
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi... With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required. 展开更多
关键词 smart park smart city Park Information modeling(PIM) smart technology Building Information modeling(BIM) City Information modeling(CIM)
在线阅读 下载PDF
基于ABC-X模型分析助产士出勤率的影响因素
12
作者 倪啸 周燕 马玲 《妇儿健康导刊》 2025年第19期17-20,35,共5页
目的基于ABC-X模型分析助产士出勤率的影响因素。方法采用便利抽样法,选取2023年3月至5月江苏地区15所医院(三级甲等医院7所,二级甲等医院5所,妇幼保健院3所)共231名助产士通过微信发放问卷进行线上调查,使用ABC-X模型框架分析影响助产... 目的基于ABC-X模型分析助产士出勤率的影响因素。方法采用便利抽样法,选取2023年3月至5月江苏地区15所医院(三级甲等医院7所,二级甲等医院5所,妇幼保健院3所)共231名助产士通过微信发放问卷进行线上调查,使用ABC-X模型框架分析影响助产士出勤率的影响因素。结果不同学历、夜班频率、是否按时休假、是否参加市级以上规范化培训、婚育情况的助产士出勤行为评分比较有差异(P<0.05)。助产士的出勤主义行为评分与社会支持评分、组织支持感评分呈负相关(r=-0.825、-0.836,P<0.001),与压力知觉评分、工作倦怠评分呈正相关(r=0.905、0.920,P<0.001)。多元线性回归分析显示,助产士出勤主义行为的影响因素为夜班频率每月≥4次、未按时休假、未参加市级以上规范化培训、低社会支持程度、低组织支持感、工作倦怠以及高压力知觉(P<0.05)。结论基于ABC-X模型可知,多种压力源和个体资源的缺乏以及不恰当的应对机制是造成助产士出勤主义行为的主要原因,临床应基于ABC-X模型分析结构加强对助产士的支持,帮助产士建立健康的应对机制,优化排班制度、休假。 展开更多
关键词 abc-x模型 助产士 出勤率 影响因素
暂未订购
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:2
13
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model Structural deformation Impact loads Structural safety of projectile
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
14
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
15
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
16
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
17
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
18
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
Fast full-color pathological imaging using Fourier ptychographic microscopy via closed-form model-based colorization 被引量:2
19
作者 Yanqi Chen Jiurun Chen +4 位作者 Zhiping Wang Yuting Gao Yonghong He Yishi Shi An Pan 《Advanced Photonics Nexus》 2025年第2期7-16,共10页
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo... Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering. 展开更多
关键词 Fourier ptychographic microscopy color transfer dual-color-space constrained model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部