Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wil...Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wild-type RR,mutant sitiens(sit),and ABA-pretreated sit tomato seedlings following exposure to low-temperature(LT)stress.We found that the net photosynthetic rate,intercellular carbon dioxide concentration,transpiration rate,and stomatal conductance of sit seedlings were lower than those of RR seedlings under LT stress.The chloroplast width,area,and number of osmiophilic granules were significantly larger in sit seedlings than in RR seedlings,while the chloroplast length/width ratio was significantly lower in sit seedlings than in RR seedlings.The photochemical activity of sit seedlings was lower,and the expression of photosynthesis-related genes in sit seedlings was altered following exposure to LT stress.ABA pretreatment significantly alleviated the above phenomenon.We also conducted an RNA sequencing analysis and characterized the expression patterns of genes in tomato seedlings following exposure to LT stress.We constructed 15 cDNA libraries and identified several differentially expressed genes involved in photosynthesis,plant hormone signaling transduction,and primary and secondary metabolism.Additional analyses of genes encoding transcription factors and proteins involved in photosynthesis-related processes showed pronounced changes in expression under LT stress.Luciferase reporter assay and electrophoretic mobility shift assay revealed that WRKY22 regulates the expression of PsbA.The PSII of WRKY22 and PsbA-silenced plants was inhibited.Our findings indicate that ABA plays a role in regulating the process of photosynthesis and protecting PSII in tomato under LT stress through the WRKY22-PsbA complex.展开更多
The TSJT1 protein belongs to the class-II glutamine amidotransferase(GATase)superfamily.Research on the functions and underlying mechanisms of TSJT1 in plants is limited.In this study,the abscisic acid(ABA)-inducible ...The TSJT1 protein belongs to the class-II glutamine amidotransferase(GATase)superfamily.Research on the functions and underlying mechanisms of TSJT1 in plants is limited.In this study,the abscisic acid(ABA)-inducible gene IbTSJT1 was isolated from drought-tolerant sweetpotato line Xushu 55-2.Its expression was strongly induced by PEG6000 and ABA.The IbTSJT1 protein was localized in the nucleus and cell membrane.IbTSJT1-overexpressing sweetpotato plants exhibited significantly enhanced drought tolerance.Their ABA and proline contents and superoxide dismutase(SOD)and peroxidase(POD)activities were increased,and their reactive oxygen species(ROS)scavenging-related genes were upregulated under drought stress.The stomatal aperture assay confirmed that the IbTSJT1-overexpressing plants had greater sensitivity to ABA.The results of yeast onehybrid(Y1H)assay,electrophoretic mobility shift assay(EMSA),luciferase reporter assay and ChIP-qPCR assay indicated that IbABF2 can directly bind to the cis-acting ABA-responsive element(ABRE)in the IbTSJT1 promoter to activate the expression of IbTSJT1.These findings suggest that IbTSJT1 mediates ABA-dependent drought stress responses and enhances drought tolerance by inducing stomatal closure and activating the ROS scavenging system in transgenic sweetpotato.Our study provides a novel gene for improving drought tolerance in sweetpotato and other plants.展开更多
The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation ...The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation of flowering time.Although the NF-Y gene family has been systematically studied in many species,little is known about its role in the non-heading Chinese cabbage(NHCC)[Brassica campestris(syn.Brassica rapa)ssp.chinensis].In this study,we identified 57 NF-Y members in the genome of NHCC using BLASTP,including 20 BcNF-YAs,24BcNF-YBs,and 13 BcNF-YCs.These genes are randomly distributed on the 10 chromosomes of NHCC.The results of yeast two-hybrid experiments indicated that among some members of the three subunits of BcNF-Ys,the members of the NF-YA and NF-YC subunits interact with each other,a third of the members of the NF-YB and NF-YC subunits interact with each other,while no interaction was observed between the members of the NF-YA and NF-YB subunits.Subcellular localization experiments in tobacco showed that Bc NF-YA2 and BcNF-YA8 were expressed in the nucleus;BcNF-YB18 and BcNF-YB23 were located in the cell membrane and cytoplasm;and BcNF-YC6 and BcNF-YC7 were expressed in the nucleus,cytoplasm,and cell membrane.We analyzed the cis-acting elements in the promoter of BcNF-Y genes and found that the ABA response element is the most distributed hormone response element,which is regulated by ABA signals triggered by environmental stimuli.Accordingly,we treated three-week-old NHCC leaves with 100μmol L^(-1) ABA and analyzed the expression profile of BcNF-Ys through RNA-seq.The results showed that except for six undetected BcNF-Ys,the remaining 51 BcNF-Ys showed varying degrees of response to ABA signals.Among these,BcNF-YA8 was positively regulated by ABA signals,with the highest upregulation amplitude.Subsequently,the function of BcNF-YA8 was extensively studied,which demonstrated that its expression promotes plant flowering.This result enriches our understanding of the potential molecular mechanism by which ABA positively regulates NHCC flowering.展开更多
Biodiversity is a critical component for sustainable human development.The recently concluded Sixteenth Conference of Parties to the Convention on Biological Diversity 2024 highlighted the need for whole of society mo...Biodiversity is a critical component for sustainable human development.The recently concluded Sixteenth Conference of Parties to the Convention on Biological Diversity 2024 highlighted the need for whole of society mobilization to address the global biodiversity crisis by translating international conservation commitments into effective local actions.A study to understand the linkages between ecological conservation measures in Aba Tibetan and Qiang Autonomous Prefecture and the United Nations Sustainable Development Goal(SDG)15 target 15.5,was undertaken,using the content analysis method that reviewed international conventions,national policies,and local government measures and practices.The study revealed that there was a strong link with between Aba’s conservation strategies and SDG 15 particularly target 15.5 in reducing natural habitat degradation,curbing biodiversity loss,and protecting endangered species.The Aba Prefecture has established 25 nature reserves,that are regulated by stringent wetland protection measures,and comprehensive legal frameworks for biodiversity conservation which is in line with SDG 15.The findings further show that that the Aba Prefecture’s efforts in ecosystem conservation,species protection,and sustainable resource utilization can be used to help meet SDG 15 target 15.5.The study also identified steps to help localize SDG aspirations and goals,by strengthening long-term data monitoring and local herder participation.These insights can be used to support other initiatives and measures in other similar biodiversity-rich regions seeking to implement global conservation goals at the local level,particularly in ecologically sensitive mountainous areas.展开更多
Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known ...Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known regulatory network that modulate seed maturation in Arabidopsis;however,the underlying genetic and regulatory mechanisms in cereal crops remain largely unknown.Here,we found that ABA levels exhibited two distinct peaks during kernel development in maize,corresponding to the lag and maturation phase,respectively.Integrated transcriptome and proteome profiling of kernels treated with exogenous ABA at the pre-maturation stage suggested that the second peak of ABA acts as a trigger for kernel maturation program.Knockout of ZmSnRK2s demonstrated that subclassⅢZmSnRK2s are required for kernel maturation in maize,and the loss-of-function of subclassⅢZmSnRK2s showed a disruption in kernel dehydration and dormancy.We identified a conserved ABA–SnRK2–b ZIP signaling pathway mediating this process in maize.Additionally,ZmSnRK2.10 overexpression accelerates kernel dehydration during maturity,achieving reduced kernel moisture content(KMC)at physiological maturity(PM).Overall,our findings establish ABA-activated SnRK2s as central regulators of kernel maturation in maize and provide valuable genetic resources for breeding maize varieties with low moisture content at harvest.展开更多
Transcription factors(TFs)play key roles in the regulatory network of leaf senescence.However,many nodes in this network remain unclear.To elucidate the mechanism of leaf senescence mediated by a rice TF,WRKY10,the ex...Transcription factors(TFs)play key roles in the regulatory network of leaf senescence.However,many nodes in this network remain unclear.To elucidate the mechanism of leaf senescence mediated by a rice TF,WRKY10,the expression of multiple senescence-related genes and physiological phenotypes were monitored in WRKY10-and VQ MOTIF-CONTAINING PROTEIN8(VQ8)-overexpressing plants and the wrky10 and vq8 mutants.Our results showed that WRKY10 positively regulates abscisic acid(ABA)-and dark-induced senescence(DIS)by directly regulating the expression of multiple senescence-related genes.The VQ8 protein,a repressor of WRKY10,negatively regulates WRKY10-mediated DIS.The WRKY10-VQ8 module fine-tunes the progression of DIS.ABA,methyl jasmonate,and H_(2)O_(2) accelerate WRKY10-mediated DIS,whereas ammonium nitrate and dithiothreitol delay WRKY10-mediated DIS.Further analysis revealed that WRKY10 and VQ8 interact with ABA RESPONSIVE ELEMENT BINDING FACTOR1(ABF1)or ABF2.VQ8 represses the transcriptional activity of ABF1 and ABF2.Overexpression of ABF1 or ABF2 accelerates ABA-and dark-induced senescence and H_(2)O_(2) accumulation in N.benthamiana leaves,and WRKY10 and VQ8 can inhibit either ABF1-or ABF2-induced cell necrosis.Taken together,WRKY10 integrates multiple senescence signals to establish an orderly progression of leaf senescence.The VQ8 protein acts as a brake on WRKY10-induced senescence and ABF1/2-induced cell death,preventing uncontrolled cell death.展开更多
基金supported by the National Natural Science Foundation of China(32272791 and 32072651)the earmarked fund for CARS(CARS-23)+1 种基金the Joint Fund for Innovation Enhancement of Liaoning Province,China(2021-NLTS-11-01)the support program for Young and Middle-aged Scientific and Technological Innovation Talents,China(RC210293)。
文摘Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wild-type RR,mutant sitiens(sit),and ABA-pretreated sit tomato seedlings following exposure to low-temperature(LT)stress.We found that the net photosynthetic rate,intercellular carbon dioxide concentration,transpiration rate,and stomatal conductance of sit seedlings were lower than those of RR seedlings under LT stress.The chloroplast width,area,and number of osmiophilic granules were significantly larger in sit seedlings than in RR seedlings,while the chloroplast length/width ratio was significantly lower in sit seedlings than in RR seedlings.The photochemical activity of sit seedlings was lower,and the expression of photosynthesis-related genes in sit seedlings was altered following exposure to LT stress.ABA pretreatment significantly alleviated the above phenomenon.We also conducted an RNA sequencing analysis and characterized the expression patterns of genes in tomato seedlings following exposure to LT stress.We constructed 15 cDNA libraries and identified several differentially expressed genes involved in photosynthesis,plant hormone signaling transduction,and primary and secondary metabolism.Additional analyses of genes encoding transcription factors and proteins involved in photosynthesis-related processes showed pronounced changes in expression under LT stress.Luciferase reporter assay and electrophoretic mobility shift assay revealed that WRKY22 regulates the expression of PsbA.The PSII of WRKY22 and PsbA-silenced plants was inhibited.Our findings indicate that ABA plays a role in regulating the process of photosynthesis and protecting PSII in tomato under LT stress through the WRKY22-PsbA complex.
基金supported by the earmarked fund for CARS-10-Sweetpotato and the Beijing Food Crops Innovation Consortium Program,China(BJLSTD03)。
文摘The TSJT1 protein belongs to the class-II glutamine amidotransferase(GATase)superfamily.Research on the functions and underlying mechanisms of TSJT1 in plants is limited.In this study,the abscisic acid(ABA)-inducible gene IbTSJT1 was isolated from drought-tolerant sweetpotato line Xushu 55-2.Its expression was strongly induced by PEG6000 and ABA.The IbTSJT1 protein was localized in the nucleus and cell membrane.IbTSJT1-overexpressing sweetpotato plants exhibited significantly enhanced drought tolerance.Their ABA and proline contents and superoxide dismutase(SOD)and peroxidase(POD)activities were increased,and their reactive oxygen species(ROS)scavenging-related genes were upregulated under drought stress.The stomatal aperture assay confirmed that the IbTSJT1-overexpressing plants had greater sensitivity to ABA.The results of yeast onehybrid(Y1H)assay,electrophoretic mobility shift assay(EMSA),luciferase reporter assay and ChIP-qPCR assay indicated that IbABF2 can directly bind to the cis-acting ABA-responsive element(ABRE)in the IbTSJT1 promoter to activate the expression of IbTSJT1.These findings suggest that IbTSJT1 mediates ABA-dependent drought stress responses and enhances drought tolerance by inducing stomatal closure and activating the ROS scavenging system in transgenic sweetpotato.Our study provides a novel gene for improving drought tolerance in sweetpotato and other plants.
基金supported by the National Natural Science Foundation of China(Grant No.31872106)the National Vegetable Industry Technology System(Grant No.CARS-23-A-16)+1 种基金the Jiangsu Seed Industry Revitalization Project(Grant No.JBGS(2021)015)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation of flowering time.Although the NF-Y gene family has been systematically studied in many species,little is known about its role in the non-heading Chinese cabbage(NHCC)[Brassica campestris(syn.Brassica rapa)ssp.chinensis].In this study,we identified 57 NF-Y members in the genome of NHCC using BLASTP,including 20 BcNF-YAs,24BcNF-YBs,and 13 BcNF-YCs.These genes are randomly distributed on the 10 chromosomes of NHCC.The results of yeast two-hybrid experiments indicated that among some members of the three subunits of BcNF-Ys,the members of the NF-YA and NF-YC subunits interact with each other,a third of the members of the NF-YB and NF-YC subunits interact with each other,while no interaction was observed between the members of the NF-YA and NF-YB subunits.Subcellular localization experiments in tobacco showed that Bc NF-YA2 and BcNF-YA8 were expressed in the nucleus;BcNF-YB18 and BcNF-YB23 were located in the cell membrane and cytoplasm;and BcNF-YC6 and BcNF-YC7 were expressed in the nucleus,cytoplasm,and cell membrane.We analyzed the cis-acting elements in the promoter of BcNF-Y genes and found that the ABA response element is the most distributed hormone response element,which is regulated by ABA signals triggered by environmental stimuli.Accordingly,we treated three-week-old NHCC leaves with 100μmol L^(-1) ABA and analyzed the expression profile of BcNF-Ys through RNA-seq.The results showed that except for six undetected BcNF-Ys,the remaining 51 BcNF-Ys showed varying degrees of response to ABA signals.Among these,BcNF-YA8 was positively regulated by ABA signals,with the highest upregulation amplitude.Subsequently,the function of BcNF-YA8 was extensively studied,which demonstrated that its expression promotes plant flowering.This result enriches our understanding of the potential molecular mechanism by which ABA positively regulates NHCC flowering.
文摘Biodiversity is a critical component for sustainable human development.The recently concluded Sixteenth Conference of Parties to the Convention on Biological Diversity 2024 highlighted the need for whole of society mobilization to address the global biodiversity crisis by translating international conservation commitments into effective local actions.A study to understand the linkages between ecological conservation measures in Aba Tibetan and Qiang Autonomous Prefecture and the United Nations Sustainable Development Goal(SDG)15 target 15.5,was undertaken,using the content analysis method that reviewed international conventions,national policies,and local government measures and practices.The study revealed that there was a strong link with between Aba’s conservation strategies and SDG 15 particularly target 15.5 in reducing natural habitat degradation,curbing biodiversity loss,and protecting endangered species.The Aba Prefecture has established 25 nature reserves,that are regulated by stringent wetland protection measures,and comprehensive legal frameworks for biodiversity conservation which is in line with SDG 15.The findings further show that that the Aba Prefecture’s efforts in ecosystem conservation,species protection,and sustainable resource utilization can be used to help meet SDG 15 target 15.5.The study also identified steps to help localize SDG aspirations and goals,by strengthening long-term data monitoring and local herder participation.These insights can be used to support other initiatives and measures in other similar biodiversity-rich regions seeking to implement global conservation goals at the local level,particularly in ecologically sensitive mountainous areas.
基金supported by the National Natural Science Foundation of China(32201696)the Natural Science Foundation of Sichuan Province(23NSFSC4071)。
文摘Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known regulatory network that modulate seed maturation in Arabidopsis;however,the underlying genetic and regulatory mechanisms in cereal crops remain largely unknown.Here,we found that ABA levels exhibited two distinct peaks during kernel development in maize,corresponding to the lag and maturation phase,respectively.Integrated transcriptome and proteome profiling of kernels treated with exogenous ABA at the pre-maturation stage suggested that the second peak of ABA acts as a trigger for kernel maturation program.Knockout of ZmSnRK2s demonstrated that subclassⅢZmSnRK2s are required for kernel maturation in maize,and the loss-of-function of subclassⅢZmSnRK2s showed a disruption in kernel dehydration and dormancy.We identified a conserved ABA–SnRK2–b ZIP signaling pathway mediating this process in maize.Additionally,ZmSnRK2.10 overexpression accelerates kernel dehydration during maturity,achieving reduced kernel moisture content(KMC)at physiological maturity(PM).Overall,our findings establish ABA-activated SnRK2s as central regulators of kernel maturation in maize and provide valuable genetic resources for breeding maize varieties with low moisture content at harvest.
基金supported by the National Natural Science Foundation of China (31371557 and 31571574)Wenzhou Basic Scientific Research Project (N20240009)。
文摘Transcription factors(TFs)play key roles in the regulatory network of leaf senescence.However,many nodes in this network remain unclear.To elucidate the mechanism of leaf senescence mediated by a rice TF,WRKY10,the expression of multiple senescence-related genes and physiological phenotypes were monitored in WRKY10-and VQ MOTIF-CONTAINING PROTEIN8(VQ8)-overexpressing plants and the wrky10 and vq8 mutants.Our results showed that WRKY10 positively regulates abscisic acid(ABA)-and dark-induced senescence(DIS)by directly regulating the expression of multiple senescence-related genes.The VQ8 protein,a repressor of WRKY10,negatively regulates WRKY10-mediated DIS.The WRKY10-VQ8 module fine-tunes the progression of DIS.ABA,methyl jasmonate,and H_(2)O_(2) accelerate WRKY10-mediated DIS,whereas ammonium nitrate and dithiothreitol delay WRKY10-mediated DIS.Further analysis revealed that WRKY10 and VQ8 interact with ABA RESPONSIVE ELEMENT BINDING FACTOR1(ABF1)or ABF2.VQ8 represses the transcriptional activity of ABF1 and ABF2.Overexpression of ABF1 or ABF2 accelerates ABA-and dark-induced senescence and H_(2)O_(2) accumulation in N.benthamiana leaves,and WRKY10 and VQ8 can inhibit either ABF1-or ABF2-induced cell necrosis.Taken together,WRKY10 integrates multiple senescence signals to establish an orderly progression of leaf senescence.The VQ8 protein acts as a brake on WRKY10-induced senescence and ABF1/2-induced cell death,preventing uncontrolled cell death.