A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle t...A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.展开更多
To describe two correlated events,the Alice-Bob(AB)systems were constructed by Lou through the symmetry of the shifted parity,time reversal and charge conjugation.In this paper,the coupled AB system of the Kadomtsev-P...To describe two correlated events,the Alice-Bob(AB)systems were constructed by Lou through the symmetry of the shifted parity,time reversal and charge conjugation.In this paper,the coupled AB system of the Kadomtsev-Petviashvili equation,which is a useful model in natural science,is established.By introducing an extended Backlund transformation and its bilinear formation,the symmetry breaking soliton,lump and breather solutions of this system are derived with the aid of some ansatze functions.Figures show these fascinating symmetry breaking structures of the explicit solutions.展开更多
基金supported by the National Natural Science Foundation of China under grant number 11447017。
文摘A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.
基金supported by the National Natural Science Foundation of China(Nos.11705077,11775104 and 11447017)the Natural Science Foundation of Zhejiang Province(No.LY14A010005)。
文摘To describe two correlated events,the Alice-Bob(AB)systems were constructed by Lou through the symmetry of the shifted parity,time reversal and charge conjugation.In this paper,the coupled AB system of the Kadomtsev-Petviashvili equation,which is a useful model in natural science,is established.By introducing an extended Backlund transformation and its bilinear formation,the symmetry breaking soliton,lump and breather solutions of this system are derived with the aid of some ansatze functions.Figures show these fascinating symmetry breaking structures of the explicit solutions.