The hot deformation behavior of AA5083 aluminum alloy was studied using isothermal compression tests with a Gleeble 3500 thermal simulator at strain rate of 0.0110 s 1 and at temperature of 300500°C.The experimen...The hot deformation behavior of AA5083 aluminum alloy was studied using isothermal compression tests with a Gleeble 3500 thermal simulator at strain rate of 0.0110 s 1 and at temperature of 300500°C.The experimental results indicate that dynamic recrystallization(DRX)tends to occur at high strain rates and temperatures,and therefore the flow stress is decreased.To predict the flow behavior under different deformation conditions,a strain-compensated constitutive equation based on Arrhenius-type equation and Zener Hollomon parameters was proposed.The flow stresses obtained from the constitutive equation are consistent with the experimental results.The average absolute relative error is only 4.52%over the entire experimental range,indicating that the proposed constitutive equation exhibits high prediction precision for the hot deformation behavior of AA5083 aluminum alloy.展开更多
In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were ob...In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy. The hybrid nanocomposite coatings have been synthesized from tetrae...Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy. The hybrid nanocomposite coatings have been synthesized from tetraethyIorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. The multilayer coatings were prepared by dip-coating technique. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out to show the formation of the Si-O-Si structural backbone of the hybrid coatings. Structure and surface morphology of the coatings were studied by optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Characterization of the coatings with respect to pencil scratch hardness, adhesive and abrasion resistance was performed. The corrosion protection performance of these coatings was examined by using cyclic potentiodynamic polarization technique in Persian Gulf water. The results revealed that crack-free films with smooth surface were obtained. With increasing the number of sol-gel coated layers, corrosion resistance increased from 81 to 419 kQ cm2, while the abrasion wear resistance did not change significantly. However, the triple sol-gel coated layer offered excellent protection against corrosion.展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
To enhance the stress corrosion cracking(SCC)resistance,Zn was utilized as an alloy element to add in the AA5083 aluminum alloys.The effects of Zn content on the microstructures,mechanical properties and SCC resistanc...To enhance the stress corrosion cracking(SCC)resistance,Zn was utilized as an alloy element to add in the AA5083 aluminum alloys.The effects of Zn content on the microstructures,mechanical properties and SCC resistance were systematically evaluated.The results demonstrate that in the studied range adding Zn can significantly improve the SCC resistance of the AA5083 alloys.This is related to the relatively low amount of continuous β(Al3Mg2)phase along grain boundary and the formation of Zn-containing phase such as Al5Mg11Zn4 phase.Based on the results,the optimal Zn content with respect to SCC resistance is approximately 0.50 wt.%.Further increasing Zn content results in coarse precipitates discontinuously distributed along grain boundaries.展开更多
Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sou...Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.展开更多
Aluminum alloy 5083(AA5083)processed by large-scale Equal-channel angular pressing(ECAP)is an excellent engineering material with great prospects for industrial applications.An accurate assessment of the underlying co...Aluminum alloy 5083(AA5083)processed by large-scale Equal-channel angular pressing(ECAP)is an excellent engineering material with great prospects for industrial applications.An accurate assessment of the underlying constitutive relationships with easily determined material constants is critical for the predictive design and informed processing of such structural materials.To develop such a design framework,uniaxial dynamic compressive tests over a wide range of temperatures(293-573 K)were carried out for an ECAP-processed AA5083 alloy.Additionally,the microstructure before and after dynamic loading was characterized by SEM and TEM.Based on the experimental results,a new dynamic constitutive model,based on thermal activation theory,was established to describe the plastic flow behavior of the AA5083 alloy that incorporates the effects of plastic strain,temperature,and strain rate.The input parameters of the new model were determined using a particle swarm optimization(PSO)method.The model predictions show excellent agreement with experimental results,which suggests that the current predictive constitutive model is highly effective in reproducing the dynamic deformation behavior of the large-scale ECAP-processed AA5083.展开更多
AZ31/AA5083 hybrid alloy nanocomposite containing CNT nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The AZ31/AA5083 hybrid alloy nanocomposite exhibited similar g...AZ31/AA5083 hybrid alloy nanocomposite containing CNT nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The AZ31/AA5083 hybrid alloy nanocomposite exhibited similar grain size to monolithic AZ31/AA5083 hybrid alloy, reasonable CNT nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 20% higher hardness than monolithic AZ31/AA5083 hybrid alloy. Compared to monolithic AZ31/AA5083 hybrid alloy (in tension), the AZ31/AA5083 hybrid alloy nanocomposite exhibited higher 0.2% TYS, UTS, failure strain and work of fracture (WOF) (+ 9%, + 4%, + 38% and + 44%, respectively). Also, compared to monolithic AZ31/AA5083 hybrid alloy (in compression), the AZ31/AA5083 hybrid alloy nanocomposite exhibited similar 0.2% CYS (+ 1%), and higher UCS, failure strain and WOF (+ 7%, + 23% and + 23%, respectively). The effect of CNT nanoparticle addition on the enhanced tensile and compressive response of AZ31/AA5083 hybrid alloy is investigated in this paper.展开更多
AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir...AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter.展开更多
基金Project(51474240) supported by the National Natural Science Foundation of ChinaProject(AA16380036) supported by the Science and Technology Major Project of Guangxi Autonomous Region,ChinaProject(2017BF20201) supported by the Scientific Research and Technology Development Program of Liuzhou City,China
文摘The hot deformation behavior of AA5083 aluminum alloy was studied using isothermal compression tests with a Gleeble 3500 thermal simulator at strain rate of 0.0110 s 1 and at temperature of 300500°C.The experimental results indicate that dynamic recrystallization(DRX)tends to occur at high strain rates and temperatures,and therefore the flow stress is decreased.To predict the flow behavior under different deformation conditions,a strain-compensated constitutive equation based on Arrhenius-type equation and Zener Hollomon parameters was proposed.The flow stresses obtained from the constitutive equation are consistent with the experimental results.The average absolute relative error is only 4.52%over the entire experimental range,indicating that the proposed constitutive equation exhibits high prediction precision for the hot deformation behavior of AA5083 aluminum alloy.
文摘In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
基金the Department of Material Engineering of Malek Ashtar University of Technology for the financial support
文摘Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy. The hybrid nanocomposite coatings have been synthesized from tetraethyIorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. The multilayer coatings were prepared by dip-coating technique. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out to show the formation of the Si-O-Si structural backbone of the hybrid coatings. Structure and surface morphology of the coatings were studied by optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Characterization of the coatings with respect to pencil scratch hardness, adhesive and abrasion resistance was performed. The corrosion protection performance of these coatings was examined by using cyclic potentiodynamic polarization technique in Persian Gulf water. The results revealed that crack-free films with smooth surface were obtained. With increasing the number of sol-gel coated layers, corrosion resistance increased from 81 to 419 kQ cm2, while the abrasion wear resistance did not change significantly. However, the triple sol-gel coated layer offered excellent protection against corrosion.
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.
基金financially supported by the Nature Science Research Project of Anhui Province(No.1808085QE136)the Anhui Postdoctoral Science Foundation(No.934269)the National Natural Science Foundation of China(No.51905143)。
文摘To enhance the stress corrosion cracking(SCC)resistance,Zn was utilized as an alloy element to add in the AA5083 aluminum alloys.The effects of Zn content on the microstructures,mechanical properties and SCC resistance were systematically evaluated.The results demonstrate that in the studied range adding Zn can significantly improve the SCC resistance of the AA5083 alloys.This is related to the relatively low amount of continuous β(Al3Mg2)phase along grain boundary and the formation of Zn-containing phase such as Al5Mg11Zn4 phase.Based on the results,the optimal Zn content with respect to SCC resistance is approximately 0.50 wt.%.Further increasing Zn content results in coarse precipitates discontinuously distributed along grain boundaries.
文摘Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.
文摘Aluminum alloy 5083(AA5083)processed by large-scale Equal-channel angular pressing(ECAP)is an excellent engineering material with great prospects for industrial applications.An accurate assessment of the underlying constitutive relationships with easily determined material constants is critical for the predictive design and informed processing of such structural materials.To develop such a design framework,uniaxial dynamic compressive tests over a wide range of temperatures(293-573 K)were carried out for an ECAP-processed AA5083 alloy.Additionally,the microstructure before and after dynamic loading was characterized by SEM and TEM.Based on the experimental results,a new dynamic constitutive model,based on thermal activation theory,was established to describe the plastic flow behavior of the AA5083 alloy that incorporates the effects of plastic strain,temperature,and strain rate.The input parameters of the new model were determined using a particle swarm optimization(PSO)method.The model predictions show excellent agreement with experimental results,which suggests that the current predictive constitutive model is highly effective in reproducing the dynamic deformation behavior of the large-scale ECAP-processed AA5083.
文摘AZ31/AA5083 hybrid alloy nanocomposite containing CNT nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The AZ31/AA5083 hybrid alloy nanocomposite exhibited similar grain size to monolithic AZ31/AA5083 hybrid alloy, reasonable CNT nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 20% higher hardness than monolithic AZ31/AA5083 hybrid alloy. Compared to monolithic AZ31/AA5083 hybrid alloy (in tension), the AZ31/AA5083 hybrid alloy nanocomposite exhibited higher 0.2% TYS, UTS, failure strain and work of fracture (WOF) (+ 9%, + 4%, + 38% and + 44%, respectively). Also, compared to monolithic AZ31/AA5083 hybrid alloy (in compression), the AZ31/AA5083 hybrid alloy nanocomposite exhibited similar 0.2% CYS (+ 1%), and higher UCS, failure strain and WOF (+ 7%, + 23% and + 23%, respectively). The effect of CNT nanoparticle addition on the enhanced tensile and compressive response of AZ31/AA5083 hybrid alloy is investigated in this paper.
文摘AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter.