The MIG welding of in-situ generated nano-Al_(2)O_(3)powder metallurgy 7A52(PM 7A52)aluminum alloy was investigated.The microstructure was characterized using EBSD and TEM,while macrotexture and internal residual stre...The MIG welding of in-situ generated nano-Al_(2)O_(3)powder metallurgy 7A52(PM 7A52)aluminum alloy was investigated.The microstructure was characterized using EBSD and TEM,while macrotexture and internal residual stresses were analyzed with a self-developed SWXRD technique.The results revealed that PM 7A52 aluminum alloy effectively reduced the grain size,dislocation density,and texture strength in the post-weld microstructure.Furthermore,the residual stress in the weld zone(WZ)of PM 7A52 aluminum alloy was reduced by 38 MPa compared to that of the conventional melt-cast 7A52(CM 7A52)aluminum alloy.Notably,the tensile strength and elongation of welded joints in PM 7A52 aluminum alloy were increased by approximately 15%and 26%,respectively.The improvement in joint tensile strength was primarily attributed to grain boundary strengthening and dispersion strengthening caused byγ-Al_(2)O_(3)particles entering the WZ.展开更多
基金supported by the National Key Research and Development Program of China(No.SQ2021YFF0600011)。
文摘The MIG welding of in-situ generated nano-Al_(2)O_(3)powder metallurgy 7A52(PM 7A52)aluminum alloy was investigated.The microstructure was characterized using EBSD and TEM,while macrotexture and internal residual stresses were analyzed with a self-developed SWXRD technique.The results revealed that PM 7A52 aluminum alloy effectively reduced the grain size,dislocation density,and texture strength in the post-weld microstructure.Furthermore,the residual stress in the weld zone(WZ)of PM 7A52 aluminum alloy was reduced by 38 MPa compared to that of the conventional melt-cast 7A52(CM 7A52)aluminum alloy.Notably,the tensile strength and elongation of welded joints in PM 7A52 aluminum alloy were increased by approximately 15%and 26%,respectively.The improvement in joint tensile strength was primarily attributed to grain boundary strengthening and dispersion strengthening caused byγ-Al_(2)O_(3)particles entering the WZ.